Unlocking the Potential of Jute: A Comprehensive Review of Its Innovative Applications in Composite Materials
DOI:
https://doi.org/10.38032/jea.2025.02.003Keywords:
Jute, Natural fibers, Synthetic fibers, Green composites, Jute fiber compositesAbstract
The environmental hazards of synthetic materials have intensified the global pursuit of sustainable, biodegradable alternatives. Jute, a widely available natural fiber, has emerged as a viable reinforcement in bio-composites due to its low cost, renewability, biodegradability, and mechanical robustness. This review presents a comprehensive and critical evaluation of recent advancements in jute fiber-based composites, covering their structure, morphology, chemical composition, surface modifications, and processing techniques. Notably, it highlights the unique potential of jute in nanotechnology, including the production of nanocellulose and its applications in biodegradable packaging, energy storage, and 3D printing areas that have been sparsely covered in previous literature. The study also synthesizes insights on novel hybrid composites, fiber treatments, and fabrication methods that enhance jute’s compatibility with polymer matrices. Key findings indicate that surface modifications significantly improve fiber-matrix adhesion and thermal stability, enabling broader industrial applications. Challenges such as flammability, moisture absorption, and limited thermal resistance are critically assessed, alongside emerging solutions. This review identifies strategic gaps, particularly in scalable processing, high-performance nanocomposites, and the integration of circular economy principles, and outlines future research directions to bridge the gap between laboratory-scale innovation and industrial deployment. By exploring under-researched areas and cross-sector applications, this work extends the frontier of jute-based composite research and supports its evolution into a high-value, environmentally friendly material.
References
dos Santos Rosa, D. and Lenz, D.M., 2013. Biocomposites: Influence of matrix nature and additives on the properties and biodegradation behaviour. Biodegradable Engineering and Technology, pp.433-475. DOI: https://doi.org/10.5772/56290
Väisänen, T., Das, O. and Tomppo, L., 2017. A review on new bio-based constituents for natural fiber-polymer composites. Journal of Cleaner Production, 149, pp.582-596. DOI: https://doi.org/10.1016/j.jclepro.2017.02.132
Ashraf, M.A., Zwawi, M., Taqi Mehran, M., Kanthasamy, R. and Bahadar, A., 2019. Jute based bio and hybrid composites and their applications. Fibers, 7(9), p.77.
Rahman, M.S., 2010. Jute–a versatile natural fiber. Cultivation, extraction and processing. Industrial Applications of Natural Fibers, pp.1-34. DOI: https://doi.org/10.1002/9780470660324.ch6
Ullah, A.S., Shahinur, S. and Haniu, H., 2017. On the mechanical properties and uncertainties of jute yarns. Materials, 10(5), p.450. DOI: https://doi.org/10.3390/ma10050450
Shahinur, S., Sayeed, M.A., Hasan, M., Sayem, A.S.M., Haider, J. and Ura, S., 2022. Current development and future perspective on natural jute fibers and their biocomposites. Polymers, 14(7), p.1445.
Shahinur, S., Hasan, M., Ahsan, Q., Sultana, N., Ahmed, Z. and Haider, J., 2021. Effect of rot-, fire-, and water-retardant treatments on jute fiber and their associated thermoplastic composites: A study by FTIR. Polymers, 13(15), p.2571. DOI: https://doi.org/10.3390/polym13152571
Gupta, M., Srivastava, R. and Bisaria, H., 2015. Potential of jute fiber reinforced polymer composites: A review. International Journal of Fiber and Textile Research, 5(3), pp.30-38.
Rabbi, M.S., Das, S., Tasneem, T., Billah, M.M. and Hasan, A., 2023. Effect of nano-filler on the manufacturing and properties of natural fiber-based composites: a review. Journal of Engineering Advancements, 4(04), pp.101-115. DOI: https://doi.org/10.38032/jea.2023.04.001
Faruk, O., Bledzki, A.K., Fink, H.P. and Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), pp.1552-1596. DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003
Pujari, S., Ramakrishna, A. and Kumar, M.S., 2014. Comparison of jute and banana fiber composites: A review. International Journal of Current Engineering and Technology, 2(2), pp.121-126. DOI: https://doi.org/10.14741/ijcet/spl.2.2014.22
Rao, D.V., Srinivas, K. and Naidu, A.L., 2017. A review on jute stem fiber and its composites. International Journal of Engineering Trends and Technology, 6, pp.1-9.
Singh, H., Singh, J.I.P., Singh, S., Dhawan, V. and Tiwari, S.K., 2018. A brief review of jute fiber and its composites. Materials Today: Proceedings, 5(14), pp.28427-28437. DOI: https://doi.org/10.1016/j.matpr.2018.10.129
Gogna, E., Kumar, R., Anurag, Sahoo, A.K. and Panda, A., 2019. A comprehensive review on jute fiber reinforced composites. Advances in industrial and production engineering: select proceedings of FLAME 2018, pp.459-467. DOI: https://doi.org/10.1007/978-981-13-6412-9_45
Ashraf, M.A., Zwawi, M., Taqi Mehran, M., Kanthasamy, R. and Bahadar, A., 2019. Jute based bio and hybrid composites and their applications. Fibers, 7(9), p.77. DOI: https://doi.org/10.3390/fib7090077
Shahid, M.A., Rahman, M.M., Hossain, M.T., Hossain, I., Sheikh, M.S., Rahman, M.S., Uddin, N., Donne, S.W. and Hoque, M.I.U., 2025. Advances in conductive polymer-based flexible electronics for multifunctional applications. Journal of Composites Science, 9(1), p.42. DOI: https://doi.org/10.3390/jcs9010042
Sanivada, U.K., Mármol, G., Brito, F. and Fangueiro, R., 2020. PLA composites reinforced with flax and jute fibers—A review of recent trends, processing parameters and mechanical properties. Polymers, 12(10), p.2373. DOI: https://doi.org/10.3390/polym12102373
Shelar, P.B. and Narendra Kumar, U., 2021. A short review on jute fiber reinforced composites. Materials Science Forum, 1019, pp.32-43. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1019.32
Song, H., Liu, J., He, K. and Ahmad, W., 2021. A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials, 15, p.e00724. DOI: https://doi.org/10.1016/j.cscm.2021.e00724
Iman, M. and Maji, T.K., 2014. Jute: An interesting lignocellulosic fiber for new generation applications. Lignocellulosic Polymer Composites, pp.453-475. DOI: https://doi.org/10.1002/9781118773949.ch20
Pickering, K.L., Efendy, M.A. and Le, T.M., 2016. A review of recent developments in natural fiber composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, pp.98-112. DOI: https://doi.org/10.1016/j.compositesa.2015.08.038
Wang, P., Chen, F., Zhang, H., Meng, W., Sun, Y. and Liu, C., 2017. Large‐scale preparation of jute‐fiber‐reinforced starch‐based composites with high mechanical strength and optimized biodegradability. Starch‐Stärke, 69(11-12), p.1700052. DOI: https://doi.org/10.1002/star.201700052
Chakrabarti, D., Islam, M.S., Jubair, K. and Sarker, M.R.H., 2020. Effect of chemical treatment on the mechanical properties of luffa fiber reinforced epoxy composite. Journal of Engineering Advancements, 1(2), pp.37-42. DOI: https://doi.org/10.38032/jea.2020.02.002
Aftab, H., Rahman, G.S., Kamruzzaman, M., Khan, M.A., Ali, M.F. and Al Mamun, M.A., 2022. Physico-mechanical properties of industrial tea waste reinforced jute unsaturated polyester composites. Journal of Engineering Advancements, 3(02), pp.42-49. DOI: https://doi.org/10.38032/jea.2022.02.001
Gordon, J.E., 2006. The new science of strong materials: Or why you don’t fall through the floor. Princeton University Press.
Muthu, S.S., 2019. Green composites. Springer. DOI: https://doi.org/10.1007/978-981-13-1969-3
Jubair, K., Islam, M.S. and Chakraborty, D., 2021. Investigation of mechanical properties of banana-glass fiber reinforced hybrid composites. Journal of Engineering Advancements, 2(04), pp.175-179. DOI: https://doi.org/10.38032/jea.2021.04.002
Jagadeesh, D., Kanny, K. and Prashantha, K., 2017. A review on research and development of green composites from plant protein‐based polymers. Polymer Composites, 38(8), pp.1504-1518. DOI: https://doi.org/10.1002/pc.23718
Dai, D. and Fan, M., 2014. Wood fibers as reinforcements in natural fiber composites: structure, properties, processing and applications. In Natural fiber composites (pp. 3-65). Woodhead publishing. DOI: https://doi.org/10.1533/9780857099228.1.3
Nair, A. and Joseph, R., 2014. Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements. In Chemistry, manufacture and applications of natural rubber (pp. 249-283). Elsevier. DOI: https://doi.org/10.1533/9780857096913.2.249
Omrani, E., Menezes, P.L. and Rohatgi, P.K., 2016. State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal, 19(2), pp.717-736. DOI: https://doi.org/10.1016/j.jestch.2015.10.007
Ouarhim, W., Zari, N. and Bouhfid, R., 2019. Mechanical performance of natural fibers–based thermosetting composites. In Mechanical and physical testing of biocomposites, fiber-reinforced composites and hybrid composites (pp. 43-60). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-102292-4.00003-5
Menezes, P.L., Rohatgi, P.K. and Lovell, M.R., 2012. Studies on the tribological behavior of natural fiber reinforced polymer composite. Green Tribology, pp.329-345. DOI: https://doi.org/10.1007/978-3-642-23681-5_12
Senthilkumar, K., Saba, N., Rajini, N., Chandrasekar, M., Jawaid, M., Siengchin, S. and Alotman, O.Y., 2018. Mechanical properties evaluation of sisal fiber reinforced polymer composites: A review. Construction and Building Materials, 174, pp.713-729. DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.143
Saxena, M., Pappu, A., Haque, R. and Sharma, A., 2011. Sisal fiber based polymer composites and their applications. Cellulose Fibers: Bio-and Nano-Polymer Composites, pp.589-659. DOI: https://doi.org/10.1007/978-3-642-17370-7_22
Arjmandi, R., 2017. Structural properties of rice husk and its polymer matrix composites. In Lignocellulosic Fiber and Biomass-Based Composite Materials (pp. 3-65). Elsevier.
Arjmandi, R., Hassan, A., Majeed, K. and Zakaria, Z., 2015. Rice husk filled polymer composites. International Journal of Polymer Science, 2015, p.501471. DOI: https://doi.org/10.1155/2015/501471
Wang, Y., Wu, H., Zhang, C., Ren, L., Yu, H., Galland, M. and Ichchou, M., 2019. Acoustic characteristics parameters of polyurethane/rice husk composites. Polymer Composites, 40(7), pp.2653-2661. DOI: https://doi.org/10.1002/pc.25060
Das, S., Singha, A.K., Chaudhuri, A. and Ganguly, P.K., 2019. Lengthwise jute fiber properties variation and its effect on jute–polyester composite. Journal of the Textile Institute, 110(12), pp.1695-1702. DOI: https://doi.org/10.1080/00405000.2019.1613735
Khan, J. and Khan, M., 2015. The use of jute fibers as reinforcements in composites. In Biofiber Reinforcements in Composite Materials (pp. 3-34). Elsevier. DOI: https://doi.org/10.1533/9781782421276.1.3
Munde, Y.S., Ingle, R.B. and Siva, I., 2018. Investigation to appraise the vibration and damping characteristics of coir fiber reinforced polypropylene composites. Advanced Materials and Processing Technologies, 4(4), pp.639-650. DOI: https://doi.org/10.1080/2374068X.2018.1488798
Verma, D., Gope, P., Shandilya, A., Gupta, A. and Maheshwari, M., 2013. Coir fiber reinforcement and application in polymer composites. Journal of Materials and Environmental Science, 4(2), pp.263-276.
Chollakup, R., Smitthipong, W., Kongtud, W. and Tantatherdtam, R., 2013. Polyethylene green composites reinforced with cellulose fibers (coir and palm fibers): Effect of fiber surface treatment and fiber content. Journal of Adhesion Science and Technology, 27(12), pp.1290-1300. DOI: https://doi.org/10.1080/01694243.2012.694275
Abdi, B., Azwan, S., Abdullah, M. and Ayob, A., 2014. Flexural and tensile behaviour of kenaf fiber composite materials. Materials Research Innovations, 18(sup6), pp.S6-184-S6-188. DOI: https://doi.org/10.1179/1432891714Z.000000000954
Ben Mlik, Y., Jaouadi, M., Rezig, S., Khoffi, F., Slah, M. and Durand, B., 2018. Kenaf fiber-reinforced polyester composites: Flexural characterization and statistical analysis. Journal of the Textile Institute, 109(6), pp.713-722. DOI: https://doi.org/10.1080/00405000.2017.1365580
Shahzad, A., 2012. Hemp fiber and its composites–a review. Journal of Composite Materials, 46(8), pp.973-986. DOI: https://doi.org/10.1177/0021998311413623
Sullins, T., Pillay, S., Komus, A. and Ning, H., 2017. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering, 114, pp.15-22. DOI: https://doi.org/10.1016/j.compositesb.2017.02.001
Sathishkumar, T., Naveen, J. and Satheeshkumar, S., 2014. Hybrid fiber reinforced polymer composites–a review. Journal of Reinforced Plastics and Composites, 33(5), pp.454-471. DOI: https://doi.org/10.1177/0731684413516393
Rahman, R. and Putra, S.Z.F.S., 2019. Tensile properties of natural and synthetic fiber-reinforced polymer composites. In Mechanical and physical testing of biocomposites, fiber-reinforced composites and hybrid composites (pp. 81-102). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-102292-4.00005-9
Jawaid, M., Thariq, M. and Saba, N., 2018. Mechanical and physical testing of biocomposites, fiber-reinforced composites and hybrid composites. Woodhead Publishing.
Rajak, D.K., Pagar, D.D., Kumar, R. and Pruncu, C.I., 2019. Recent progress of reinforcement materials: A comprehensive overview of composite materials. Journal of Materials Research and Technology, 8(6), pp.6354-6374. DOI: https://doi.org/10.1016/j.jmrt.2019.09.068
Ghalia, M.A. and Abdelrasoul, A., 2019. Compressive and fracture toughness of natural and synthetic fiber-reinforced polymer. In Mechanical and physical testing of biocomposites, fiber-reinforced composites and hybrid composites (pp. 123-140). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-102292-4.00007-2
Abdellaoui, H., Raji, M., Essabir, H. and Bouhfid, R., 2019. Mechanical behavior of carbon/natural fiber-based hybrid composites. In Mechanical and physical testing of biocomposites, fiber-reinforced composites and hybrid composites (pp. 103-122). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-102292-4.00006-0
Unterweger, C., Brüggemann, O. and Fürst, C., 2014. Synthetic fibers and thermoplastic short‐fiber‐reinforced polymers: Properties and characterization. Polymer Composites, 35(2), pp.227-236. DOI: https://doi.org/10.1002/pc.22654
Tcherdyntsev, V., 2021. Reinforced polymer composites. Polymers, 13(1), p.1. DOI: https://doi.org/10.3390/polym13040564
Chung, D., 2017. Carbon fibers, nanofibers, and nanotubes. Carbon Composites, 2, pp.12-47. DOI: https://doi.org/10.1016/B978-0-12-804459-9.00001-4
Chung, D.D., 2017. Introduction to carbon composites. Carbon Composites, pp.88-160. DOI: https://doi.org/10.1016/B978-0-12-804459-9.00002-6
Nobe, R., Qiu, J., Kudo, M., Ito, K. and Kaneko, M., 2019. Effects of SCF content, injection speed, and CF content on the morphology and tensile properties of microcellular injection‐molded CF/PP composites. Polymer Engineering & Science, 59(7), pp.1371-1380. DOI: https://doi.org/10.1002/pen.25120
Zhao, X., Wang, X., Wu, Z., Keller, T. and Vassilopoulos, A.P., 2019. Temperature effect on fatigue behavior of basalt fiber‐reinforced polymer composites. Polymer Composites, 40(6), pp.2273-2283. DOI: https://doi.org/10.1002/pc.25035
Xu, Z. and Gao, C., 2015. Graphene fiber: A new trend in carbon fibers. Materials Today, 18(9), pp.480-492. DOI: https://doi.org/10.1016/j.mattod.2015.06.009
Sreenivasulu, B., Ramji, B. and Nagaral, M., 2018. A review on graphene reinforced polymer matrix composites. Materials Today: Proceedings, 5(1), pp.2419-2428. DOI: https://doi.org/10.1016/j.matpr.2017.11.021
Li, Y., Wang, S. and Wang, Q., 2017. A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene. Carbon, 111, pp.538-545. DOI: https://doi.org/10.1016/j.carbon.2016.10.039
Chaudhary, V., Bajpai, P.K. and Maheshwari, S., 2018. Studies on mechanical and morphological characterization of developed jute/hemp/flax reinforced hybrid composites for structural applications. Journal of Natural Fibers, 15(1), pp.80-97. DOI: https://doi.org/10.1080/15440478.2017.1320260
Abraham, E., Deepa, B., Pothan, L.A., Jacob, M., Thomas, S., Cvelbar, U. and Anandjiwala, R., 2011. Extraction of nanocellulose fibrils from lignocellulosic fibers: A novel approach. Carbohydrate Polymers, 86(4), pp.1468-1475. DOI: https://doi.org/10.1016/j.carbpol.2011.06.034
Satyanarayana, K.G., Arizaga, G.G. and Wypych, F., 2009. Biodegradable composites based on lignocellulosic fibers—An overview. Progress in Polymer Science, 34(9), pp.982-1021. DOI: https://doi.org/10.1016/j.progpolymsci.2008.12.002
Jawaid, M. and Khalil, H.A., 2011. Cellulosic/synthetic fiber reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1), pp.1-18. DOI: https://doi.org/10.1016/j.carbpol.2011.04.043
Shahida, S., Rahman, M.M., Hoque, M.B., Rahman, M.M., Baria, B., Hasan, T. and Khan, R.A., 2024. Gamma irradiation-induced modifications in E-glass fiber reinforced polypropylene composites: A structural and performance analysis. Journal of Engineering Advancements, 5(4), pp.132-137. DOI: https://doi.org/10.38032/jea.2024.04.005
Faruk, O., Bledzki, A.K., Fink, H. and Sain, M., 2014. Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering, 299(1), pp.9-26. DOI: https://doi.org/10.1002/mame.201300008
Khalil, H.A., Davoudpour, Y., Islam, M.N., Mustapha, A., Sudesh, K., Dungani, R. and Jawaid, M., 2014. Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 99, pp.649-665. DOI: https://doi.org/10.1016/j.carbpol.2013.08.069
Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J. and Nassiopoulos, E., 2011. Cellulose‐based bio‐and nanocomposites: a review. International journal of polymer science, 2011(1), p.837875. DOI: https://doi.org/10.1155/2011/837875
Khalil, H.A., Bhat, A. and Yusra, A.I., 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), pp.963-979. DOI: https://doi.org/10.1016/j.carbpol.2011.08.078
Heinze, T. and Petzold, K., 2008. Cellulose chemistry: Novel products and synthesis paths. In Monomers, polymers and composites from renewable resources (pp. 343-368). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-045316-3.00016-8
Gopinath, A., Kumar, M.S. and Elayaperumal, A., 2014. Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Procedia Engineering, 97, pp.2052-2063. DOI: https://doi.org/10.1016/j.proeng.2014.12.448
Célino, A., Fréour, S., Jacquemin, F. and Casari, P., 2014. The hygroscopic behavior of plant fibers: A review. Frontiers in Chemistry, 1, p.43. DOI: https://doi.org/10.3389/fchem.2013.00043
Roy, S. and Lutfar, L.B., 2012. Bast fibers: Jute. In Handbook of natural fibers (pp. 39-59). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-818398-4.00003-7
Jayamani, E., Hamdan, S., Rahman, M.R. and Bakri, M.K.B., 2014. Comparative study of dielectric properties of hybrid natural fiber composites. Procedia Engineering, 97, pp.536-544. DOI: https://doi.org/10.1016/j.proeng.2014.12.280
Yan, L., Kasal, B. and Huang, L., 2016. A review of recent research on the use of cellulosic fibers, their fiber fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Composites Part B: Engineering, 92, pp.94-132. DOI: https://doi.org/10.1016/j.compositesb.2016.02.002
Norgren, M. and Edlund, H., 2014. Lignin: Recent advances and emerging applications. Current Opinion in Colloid & Interface Science, 19(5), pp.409-416. DOI: https://doi.org/10.1016/j.cocis.2014.08.004
Kumar, S., Mohanty, A., Erickson, L. and Misra, M., 2009. Lignin and its applications with polymers. Journal of Biobased Materials and Bioenergy, 3(1), pp.1-24. DOI: https://doi.org/10.1166/jbmb.2009.1001
John, M.J. and Thomas, S., 2008. Biofibers and biocomposites. Carbohydrate Polymers, 71(3), pp.343-364. DOI: https://doi.org/10.1016/j.carbpol.2007.05.040
Gurunathan, T., Mohanty, S. and Nayak, S.K., 2015. A review of the recent developments in biocomposites based on natural fibers and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, pp.1-25. DOI: https://doi.org/10.1016/j.compositesa.2015.06.007
Hong, C., Kim, N., Kang, S., Nah, C., Lee, Y.S., Cho, B.H. and Ahn, J.H., 2008. Mechanical properties of maleic anhydride treated jute fiber/polypropylene composites. Plastics, Rubber and Composites, 37(7), pp.325-330. DOI: https://doi.org/10.1179/174328908X314334
Sarikanat, M., 2010. The influence of oligomeric siloxane concentration on the mechanical behaviors of alkalized jute/modified epoxy composites. Journal of Reinforced Plastics and Composites, 29(6), pp.807-817. DOI: https://doi.org/10.1177/0731684408100700
Sever, K., Sarikanat, M., Seki, Y., Erkan, G. and Erdoğan, Ü.H., 2010. The mechanical properties of γ-methacryloxypropyltrimethoxy silane-treated jute/polyester composites. Journal of Composite Materials, 44(15), pp.1913-1924. DOI: https://doi.org/10.1177/0021998309360939
Kabir, M.A., Huque, M.M., Islam, M.R. and Bledzki, A.K., 2010. Mechanical properties of jute fiber reinforced polypropylene composite; Effect of chemical treatment by benzenediazonium salt in alkaline medium. BioResources, 5(3), pp.1618-1625. DOI: https://doi.org/10.15376/biores.5.3.1618-1625
Goriparthi, B.K., Suman, K. and Rao, N.M., 2012. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Composites Part A: Applied Science and Manufacturing, 43(10), pp.1800-1808. DOI: https://doi.org/10.1016/j.compositesa.2012.05.007
Chaudhuri, S., Chakraborty, R. and Bhattacharya, P., 2013. Optimization of biodegradation of natural fiber (Chorchorus capsularis): HDPE composite using response surface methodology. Iranian Polymer Journal, 22, pp.865-875. DOI: https://doi.org/10.1007/s13726-013-0185-8
Seki, Y., Sarikanat, M., Sever, K., Erden, S. and Gulec, H.A., 2010. Effect of the low and radio frequency oxygen plasma treatment of jute fiber on mechanical properties of jute fiber/polyester composite. Fibers and Polymers, 11, pp.1159-1164. DOI: https://doi.org/10.1007/s12221-010-1159-5
Ji, S.G., Hwang, J.H., Cho, D. and Kim, H.J., 2013. Influence of electron beam treatment of jute on the thermal properties of random and two-directional jute/poly (lactic acid) green composites. Journal of Adhesion Science and Technology, 27(12), pp.1359-1373. DOI: https://doi.org/10.1080/01694243.2012.697365
Khoshnava, S.M., Rostami, R., Ismail, M. and Valipour, A., 2014. The using fungi treatment as green and environmentally process for surface modification of natural fibers. Applied Mechanics and Materials, 554, pp.116-122. DOI: https://doi.org/10.4028/www.scientific.net/AMM.554.116
Burrola-Núñez, H., Herrera-Franco, P., Rodríguez-Félix, D., Soto-Valdez, H. and Madera-Santana, T., 2018. Surface modification and performance of jute fibers as reinforcement on polymer matrix: An overview. Journal of Natural Fibers, 15(5), pp.695-713.
Thakur, V.K. and Thakur, M.K., 2014. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, pp.102-117. DOI: https://doi.org/10.1016/j.carbpol.2014.03.039
Mallick, P.K., 2007. Fiber-reinforced composites: materials, manufacturing, and design. CRC press. DOI: https://doi.org/10.1201/9781420005981
Singh, B., Gupta, M., Tarannum, H. and Randhawa, A., 2011. Natural fiber-based composite building materials. Cellulose Fibers: Bio-and Nano-Polymer Composites, pp.701-720. DOI: https://doi.org/10.1007/978-3-642-17370-7_24
Chaudhary, V., Radhakrishnan, S., Das, P.P., Dwivedi, S.P., Mishra, S. and Gupta, P., 2023. Development and mechanical characterization of PLA composites reinforced with jute and nettle bio fibers. Biomass Conversion and Biorefinery, pp.1-13. DOI: https://doi.org/10.1007/s13399-023-05183-9
Le Duc, A., Vergnes, B. and Budtova, T., 2011. Polypropylene/natural fibers composites: Analysis of fiber dimensions after compounding and observations of fiber rupture by rheo-optics. Composites Part A: Applied Science and Manufacturing, 42(11), pp.1727-1737. DOI: https://doi.org/10.1016/j.compositesa.2011.07.027
Chaitanya, S. and Singh, I., 2017. Processing of PLA/Sisal fiber biocomposites using direct-and extrusion-injection molding. Materials and Manufacturing Processes, 32(5), pp.468-474. DOI: https://doi.org/10.1080/10426914.2016.1198034
Huda, M., Drzal, L., Ray, D., Mohanty, A. and Mishra, M., 2008. Natural-fiber composites in the automotive sector. In Properties and performance of natural-fiber composites (pp. 221-268). Elsevier. DOI: https://doi.org/10.1533/9781845694593.2.221
Azaman, M., Sapuan, S., Sulaiman, S., Zainudin, E. and Abdan, K., 2013. An investigation of the processability of natural fiber reinforced polymer composites on shallow and flat thin-walled parts by injection moulding process. Materials & Design, 50, pp.451-456. DOI: https://doi.org/10.1016/j.matdes.2013.03.036
Leong, Y., Thitithanasarn, S., Yamada, K. and Hamada, H., 2014. Compression and injection molding techniques for natural fiber composites. In Natural Fiber Composites (pp. 216-232). Elsevier. DOI: https://doi.org/10.1533/9780857099228.2.216
Yuhazri, M., Phongsakorn, P. and Sihombing, H., 2008. A comparison process between vacuum infusion and hand lay-up method toward kenaf/polyester composites. International journal of basic and applied sciences, 10(3), pp.63-66.
Abdullah-Al-Kafi, Abedin, M., Beg, M., Pickering, K. and Khan, M.A., 2006. Study on the mechanical properties of jute/glass fiber-reinforced unsaturated polyester hybrid composites: Effect of surface modification by ultraviolet radiation. Journal of Reinforced Plastics and Composites, 25(6), pp.575-588. DOI: https://doi.org/10.1177/0731684405056437
Peng, X., Fan, M., Hartley, J. and Al-Zubaidy, M., 2012. Properties of natural fiber composites made by pultrusion process. Journal of Composite Materials, 46(2), pp.237-246. DOI: https://doi.org/10.1177/0021998311410474
Akil, H.M., Santulli, C., Sarasini, F., Tirillò, J. and Valente, T., 2014. Environmental effects on the mechanical behaviour of pultruded jute/glass fiber-reinforced polyester hybrid composites. Composites Science and Technology, 94, pp.62-70. DOI: https://doi.org/10.1016/j.compscitech.2014.01.017
Masoodi, R. and Pillai, K.M., 2011. Modeling the processing of natural fiber composites made using liquid composite molding. Handbook of Bioplastics and Biocomposites Engineering Applications, pp.43-74. DOI: https://doi.org/10.1002/9781118203699.ch3
Bavan, D.S. and Kumar, G.M., 2010. Potential use of natural fiber composite materials in India. Journal of Reinforced Plastics and Composites, 29(24), pp.3600-3613. DOI: https://doi.org/10.1177/0731684410381151
Jayaramudu, J., Guduri, B. and Rajulu, A.V., 2010. Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohydrate Polymers, 79(4), pp.847-851. DOI: https://doi.org/10.1016/j.carbpol.2009.10.046
Gomes, A., Matsuo, T., Goda, K. and Ohgi, J., 2007. Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Composites Part A: Applied Science and Manufacturing, 38(8), pp.1811-1820. DOI: https://doi.org/10.1016/j.compositesa.2007.04.010
Singh, J.I.P., Dhawan, V., Singh, S. and Jangid, K., 2017. Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites. Materials Today: Proceedings, 4(2), pp.2793-2799. DOI: https://doi.org/10.1016/j.matpr.2017.02.158
Vikashdhawan, D., Singh, S. and Pannu, A.S., 2017. Effect of alkali treatment on mechanical properties of jute, sisal, banana, hemp and abaca fibers for polymer composite reinforcement. International Journal of Mechanical Engineering and Technology, 8(7), pp.1775-1784.
Khan, G.A., Terano, M., Gafur, M. and Alam, M.S., 2016. Studies on the mechanical properties of woven jute fabric reinforced poly (l-lactic acid) composites. Journal of King Saud University-Engineering Sciences, 28(1), pp.69-74. DOI: https://doi.org/10.1016/j.jksues.2013.12.002
Tao, Y., Yan, L. and Jie, R., 2009. Preparation and properties of short natural fiber reinforced poly (lactic acid) composites. Transactions of Nonferrous Metals Society of China, 19, pp.s651-s655. DOI: https://doi.org/10.1016/S1003-6326(10)60126-4
Hu, R.H., Ma, Z.G., Zheng, S., Li, Y.N., Yang, G.H., Kim, H.K. and Lim, J.K., 2012. A fabrication process of high volume fraction of jute fiber/polylactide composites for truck liner. International Journal of Precision Engineering and Manufacturing, 13, pp.1243-1246. DOI: https://doi.org/10.1007/s12541-012-0165-5
Arao, Y., Fujiura, T., Itani, S. and Tanaka, T., 2015. Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Composites Part B: Engineering, 68, pp.200-206. DOI: https://doi.org/10.1016/j.compositesb.2014.08.032
Singh, J.I.P., Singh, S. and Dhawan, V., 2018. Effect of curing temperature on mechanical properties of natural fiber reinforced polymer composites. Journal of Natural Fibers, 15(5), pp.687-696. DOI: https://doi.org/10.1080/15440478.2017.1354744
Hojo, T., Xu, Z., Yang, Y. and Hamada, H., 2014. Tensile properties of bamboo, jute and kenaf mat-reinforced composite. Energy Procedia, 56, pp.72-79. DOI: https://doi.org/10.1016/j.egypro.2014.07.133
Pandita, S.D., Yuan, X., Manan, M.A., Lau, C.H., Subramanian, A.S. and Wei, J., 2014. Evaluation of jute/glass hybrid composite sandwich: Water resistance, impact properties and life cycle assessment. Journal of Reinforced Plastics and Composites, 33(1), pp.14-25. DOI: https://doi.org/10.1177/0731684413505349
Zamri, M.H., Akil, H.M., Bakar, A.A., Ishak, Z.A.M. and Cheng, L.W., 2012. Effect of water absorption on pultruded jute/glass fiber-reinforced unsaturated polyester hybrid composites. Journal of Composite Materials, 46(1), pp.51-61. DOI: https://doi.org/10.1177/0021998311410488
Ramesh, M., Palanikumar, K. and Reddy, K.H., 2013. Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites. Procedia Engineering, 51, pp.745-750. DOI: https://doi.org/10.1016/j.proeng.2013.01.106
Zhao, D., Mao, K., Yang, Y. and Hamada, H., 2017. Flexural behavior evaluation of needle-punched glass/jute hybrid mat reinforced polymer composites. Procedia Engineering, 200, pp.10-17. DOI: https://doi.org/10.1016/j.proeng.2017.07.003
Sareena, C., Sreejith, M., Ramesan, M. and Purushothaman, E., 2014. Biodegradation behaviour of natural rubber composites reinforced with natural resource fillers–monitoring by soil burial test. Journal of Reinforced Plastics and Composites, 33(5), pp.412-429. DOI: https://doi.org/10.1177/0731684413515954
Memon, A. and Nakai, A., 2013. Fabrication and mechanical properties of jute spun yarn/PLA unidirection composite by compression molding. Energy Procedia, 34, pp.830-838. DOI: https://doi.org/10.1016/j.egypro.2013.06.819
Faruk, O., 2009. Cars from jute and other bio-fibers. Macromolecular Materials and Engineering, pp.449-457.
Hoque, M.B., Hannan, M.A., Mollah, M.Z.I., Faruque, M.R.I. and Khan, R.A., 2022. Physico-mechanical properties enhancement of pineapple leaf fiber (PALF) reinforced epoxy resin-based composites using guar gum (polysaccharide) filler: Effects of gamma radiation. Radiation Effects and Defects in Solids, 177(3-4), pp.401-416. DOI: https://doi.org/10.1080/10420150.2022.2043317
Shahinur, S. and Hasan, M., 2020. Jute/coir/banana fiber reinforced bio-composites: Critical review of design, fabrication, properties and applications. Encyclopedia of Renewable and Sustainable Materials, 2, pp.751-756. DOI: https://doi.org/10.1016/B978-0-12-803581-8.10987-7
Perumal, A.B., Nambiar, R.B., Moses, J. and Anandharamakrishnan, C., 2022. Nanocellulose: Recent trends and applications in the food industry. Food Hydrocolloids, 127, p.107484. DOI: https://doi.org/10.1016/j.foodhyd.2022.107484
Baheti, V., Padil, V.V.T., Militky, J., Cernik, M. and Mishra, R., 2013. Removal of mercury from aqueous environment by jute nanofiber. Journal of Fiber Bioengineering and Informatics, 6, pp.175-184. DOI: https://doi.org/10.3993/jfbi06201306
Orasugh, J.T., Saha, N.R., Rana, D., Sarkar, G., Mollick, M.M.R., Chattoapadhyay, A., Mitra, B.C., Mondal, D., Ghosh, S.K. and Chattopadhyay, D., 2018. Jute cellulose nano-fibrils/hydroxypropylmethylcellulose nanocomposite: A novel material with potential for application in packaging and transdermal drug delivery system. Industrial Crops and Products, 112, pp.633-643. DOI: https://doi.org/10.1016/j.indcrop.2017.12.069
Baheti, V., Mishra, R., Militky, J. and Behera, B., 2014. Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films. Fibers and Polymers, 15, pp.1500-1506. DOI: https://doi.org/10.1007/s12221-014-1500-5
Shah, S.S., Cevik, E., Aziz, M.A., Qahtan, T.F., Bozkurt, A. and Yamani, Z.H., 2021. Jute sticks derived and commercially available activated carbons for symmetric supercapacitors with bio‐electrolyte: A comparative study. Synthetic Metals, 277, p.116765. DOI: https://doi.org/10.1016/j.synthmet.2021.116765
Blanco, I., 2020. The use of composite materials in 3D printing. Journal of Composites Science, 4(2), p.42. DOI: https://doi.org/10.3390/jcs4020042
Hofstätter, T., Pedersen, D.B., Tosello, G. and Hansen, H.N., 2017. State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies. Journal of Reinforced Plastics and Composites, 36(15), pp.1061-1073. DOI: https://doi.org/10.1177/0731684417695648
Valino, A.D., Dizon, J.R.C., Espera Jr, A.H., Chen, Q., Messman, J. and Advincula, R.C., 2019. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science, 98, p.101162. DOI: https://doi.org/10.1016/j.progpolymsci.2019.101162
Iqbal, R.M., Ahammad, R., Arifuzzaman, M., Islam, M.S. and Islam, M.M., 2025. Manufacturing and properties of jute fiber-reinforced polymer composites-A comprehensive review. Materials, 18(5). DOI: https://doi.org/10.3390/ma18051016
Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A. and Hirano, Y., 2016. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Scientific Reports, 6(1), p.23058. DOI: https://doi.org/10.1038/srep23058
Le Duigou, A., Barbé, A., Guillou, E. and Castro, M., 2019. 3D printing of continuous flax fiber reinforced biocomposites for structural applications. Materials & Design, 180, p.107884. DOI: https://doi.org/10.1016/j.matdes.2019.107884
Torrado Perez, A.R., Roberson, D.A. and Wicker, R.B., 2014. Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. Journal of Failure Analysis and Prevention, 14, pp.343-353. DOI: https://doi.org/10.1007/s11668-014-9803-9
Aranci, K., Uzun, M., Su, S., Cesur, S., Ulag, S., Amin, A., Guncu, M.M., Aksu, B., Kolayli, S. and Ustundag, C.B., 2020. 3D propolis-sodium alginate scaffolds: Influence on structural parameters, release mechanisms, cell cytotoxicity and antibacterial activity. Molecules, 25(21), p.5082. DOI: https://doi.org/10.3390/molecules25215082
Shah, S.S., Shaikh, M.N., Khan, M.Y., Alfasane, M.A., Rahman, M.M. and Aziz, M.A., 2021. Present status and future prospects of jute in nanotechnology: A review. Chemical Record, 21(7), pp.1631-1665. DOI: https://doi.org/10.1002/tcr.202100135
Aziz, A., Shah, S.S. and Kashem, A., 2020. Preparation and utilization of jute‐derived carbon: A short review. Chemical Record, 20(9), pp.1074-1098. DOI: https://doi.org/10.1002/tcr.202000071
Ahammad, A.S., Pal, P.R., Shah, S.S., Islam, T., Hasan, M.M., Qasem, M.A.A., Odhikari, N., Sarker, S., Kim, D.M. and Aziz, M.A., 2019. Activated jute carbon paste screen-printed FTO electrodes for nonenzymatic amperometric determination of nitrite. Journal of Electroanalytical Chemistry, 832, pp.368-379. DOI: https://doi.org/10.1016/j.jelechem.2018.11.034
Hossain, M.S., Rony, F.K., Sultana, S., Kabir, M.H., Kabir, F. and Ahmed, S., 2019. Preparation and characterization of activated carbon from bagasse and jute fiber for heavy metal adsorption. International Journal of Science and Management Studies, 2, p.15. DOI: https://doi.org/10.51386/25815946/ijsms-v2i5p103
Ramesh, T., Rajalakshmi, N. and Dhathathreyan, K.S., 2017. Synthesis and characterization of activated carbon from jute fibers for hydrogen storage. Renewable Energy and Environmental Sustainability, 2, p.4. DOI: https://doi.org/10.1051/rees/2017001
Dou, Y., Liu, X., Wang, X., Yu, K. and Liang, C., 2021. Jute fiber based micro-mesoporous carbon: A biomass derived anode material with high-performance for lithium-ion batteries. Materials Science and Engineering: B, 265, p.115015. DOI: https://doi.org/10.1016/j.mseb.2020.115015
Manjakkal, L., Franco, F.F., Pullanchiyodan, A., González‐Jiménez, M. and Dahiya, R., 2021. Natural jute fiber‐based supercapacitors and sensors for eco‐friendly energy autonomous systems. Advanced Sustainable Systems, 5(3), p.2000286. DOI: https://doi.org/10.1002/adsu.202000286
Joseph, J., Munda, P.R., Kumar, M., Sidpara, A.M. and Paul, J., 2020. Sustainable conducting polymer composites: Study of mechanical and tribological properties of natural fiber reinforced PVA composites with carbon nanofillers. Polymer-Plastics Technology and Materials, 59(10), pp.1088-1099. DOI: https://doi.org/10.1080/25740881.2020.1719144
Feng, T., Qin, J., Shao, Y., Jia, L., Li, Q. and Hu, Y., 2019. Size-controlled transparent jute fiber for replacing transparent wood in industry production area. Coatings, 9(7), p.433. DOI: https://doi.org/10.3390/coatings9070433
Kaschuk, J.J., Al Haj, Y., Rojas, O.J., Miettunen, K., Abitbol, T. and Vapaavuori, J., 2022. Plant‐based structures as an opportunity to engineer optical functions in next‐generation light management. Advanced Materials, 34(6), p.2104473. DOI: https://doi.org/10.1002/adma.202104473
Zhong, X., Li, R., Wang, Z., Wang, Y., Wang, W. and Yu, D., 2021. Highly flexible, transparent film prepared by upcycle of wasted jute fabrics with functional properties. Process Safety and Environmental Protection, 146, pp.718-725. DOI: https://doi.org/10.1016/j.psep.2020.12.013
Leal Filho, W., Salvia, A.L., Bonoli, A., Saari, U.A., Voronova, V., Klõga, M., Kumbhar, S.S., Olszewski, K., De Quevedo, D.M. and Barbir, J., 2021. An assessment of attitudes towards plastics and bioplastics in Europe. Science of the Total Environment, 755, p.142732. DOI: https://doi.org/10.1016/j.scitotenv.2020.142732
Shahinur, S., Sayeed, M.A., Hasan, M., Sayem, A.S.M., Haider, J. and Ura, S., 2022. Current development and future perspective on natural jute fibers and their biocomposites. Polymers, 14(7), p.1445. DOI: https://doi.org/10.3390/polym14071445
Cejudo-Bastante, C., Arjona-Mudarra, P., Fernández-Ponce, M.T., Casas, L., Mantell, C., Martínez de la Ossa, E.J. and Pereyra, C., 2021. Application of a natural antioxidant from grape pomace extract in the development of bioactive jute fibers for food packaging. Antioxidants, 10(2), p.216. DOI: https://doi.org/10.3390/antiox10020216
Dey, E., Choudhary, U., Bhattacharyya, R. and Ghosh, S., 2018. A review on development of medical disposable baggage from jute blended fabrics. American Journal of Engineering Research, 7, pp.78-80.
Sharma, M., Adhikari, B. and Choudhury, K., 2014. Development of cotton lap/cellulose pad substitute from jute. International Journal of Plastic Technology, 18, pp.397-402. DOI: https://doi.org/10.1007/s12588-014-9090-z
Agbaku, C.A., Yahaya, A.S., Junhua, F., Chengqi, S. and Linda, W., 2020. Jute plant-a bio-degradable material in making sanitary pad for sustainable development. International Journal of Science and Research Management, 8, pp.162-170. DOI: https://doi.org/10.18535/ijsrm/v8i06.fe01
Ullah, A. and Foisal, A., 2019. A review on sustainable textile products from jute and cotton blends. SEU Journal of Science and Engineering, 13, pp.7-12.
Ullah, M.H., Akther, H., Rahman, M.M., Foisal, A., Hasan, M.M., Amir-Al Zumahi, S. and Amri, A., 2021. Surface modification and improvements of wicking properties and dyeability of grey jute-cotton blended fabrics using low-pressure glow discharge air plasma. Heliyon, 7(8). DOI: https://doi.org/10.1016/j.heliyon.2021.e07893
Khan, A.M., Islam, M.M. and Khan, M.M.R., 2020. Chitosan incorporation for antibacterial property improvement of jute-cotton blended denim fabric. Journal of the Textile Institute, 111(5), pp.660-668. DOI: https://doi.org/10.1080/00405000.2019.1657220
Korol, J., Hejna, A., Burchart-Korol, D. and Wachowicz, J., 2020. Comparative analysis of carbon, ecological, and water footprints of polypropylene-based composites filled with cotton, jute and kenaf fibers. Materials, 13(16), p.3541. DOI: https://doi.org/10.3390/ma13163541
Islam, M.M. and Ali, M.S., 2017. Economic importance of jute in Bangladesh: Production, research achievements and diversification. International Journal of Economic Theory and Application, 4(6), pp.45-57.
Mia, R., Islam, M.A., Ahmed, B. and Mojumdar, J.I.A., 2017. Woolenization of jute fiber. European Scientific Journal, 13(30), p.314. DOI: https://doi.org/10.19044/esj.2017.v13n30p314
Sarker, F., Karim, N., Afroj, S., Koncherry, V., Novoselov, K.S. and Potluri, P., 2018. High-performance graphene-based natural fiber composites. ACS Applied Materials & Interfaces, 10(40), pp.34502-34512. DOI: https://doi.org/10.1021/acsami.8b13018
Sarker, F., Potluri, P., Afroj, S., Koncherry, V., Novoselov, K.S. and Karim, N., 2019. Ultrahigh performance of nanoengineered graphene-based natural jute fiber composites. ACS Applied Materials & Interfaces, 11(23), pp.21166-21176. DOI: https://doi.org/10.1021/acsami.9b04696
Karim, N., Sarker, F., Afroj, S., Zhang, M., Potluri, P. and Novoselov, K.S., 2021. Sustainable and multifunctional composites of graphene‐based natural jute fibers. Advanced Sustainable Systems, 5(3), p.2000228. DOI: https://doi.org/10.1002/adsu.202000228
Islam, M.H., Islam, M.R., Dulal, M., Afroj, S. and Karim, N., 2022. The effect of surface treatments and graphene-based modifications on mechanical properties of natural jute fiber composites: A review. iScience, 25(1). DOI: https://doi.org/10.1016/j.isci.2021.103597
da Luz, F.S., Garcia Filho, F.C., Del-Rio, M.T.G., Nascimento, L.F.C., Pinheiro, W.A. and Monteiro, S.N., 2020. Graphene-incorporated natural fiber polymer composites: A first overview. Polymers, 12(7), p.1601. DOI: https://doi.org/10.3390/polym12071601
Chen, Y., Chen, W., Liang, W., Wang, Q., Zhang, Y., Wang, J. and Chen, C., 2020. Graphene oxide nanoplatelets grafted jute fibers reinforced PP composites. Fibers and Polymers, 21, pp.2896-2906. DOI: https://doi.org/10.1007/s12221-020-9877-9
Islam, M.J. and Rahman, M.J., 2020. Safely functionalized carbon nanotube–coated jute fibers for advanced technology. Advanced Composites and Hybrid Materials, 3, pp.285-293. DOI: https://doi.org/10.1007/s42114-020-00160-6
Mohanty, A., Khan, M.A. and Hinrichsen, G., 2000. Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopol composites. Composites Science and Technology, 60(7), pp.1115-1124. DOI: https://doi.org/10.1016/S0266-3538(00)00012-9
Manikandan, N., Morshed, M.N., Karthik, R., Al Azad, S., Deb, H., Rumi, T.M. and Ahmed, M.R., 2017. Improvement of mechanical properties of natural fiber reinforced jute/polyester epoxy composite through meticulous alkali treatment. American Journal of Current Organic Chemistry, 3(1), pp.9-18.
Ngo, T., Ton-That, M. and Hu, W., 2013. Innovative and sustainable approaches to enhance fire resistance of cellulosic fibers for green polymer composites. SAMPE Journal, 49(3), pp.31-37.
Manfredi, L.B., Rodríguez, E., Wladyka-Przybylak, M. and Vazquez, A., 2010. Thermal properties and fire resistance of jute-reinforced composites. Composite Interfaces, 17(5-7), pp.663-675. DOI: https://doi.org/10.1163/092764410X513512
Aaliya, B., Sunooj, K.V. and Lackner, M., 2021. Biopolymer composites: A review. International Journal of Biobased Plastics, 3(1), pp.40-84. DOI: https://doi.org/10.1080/24759651.2021.1881214
Sanvezzo, P.B. and Branciforti, M.C., 2021. Recycling of industrial waste based on jute fiber-polypropylene: Manufacture of sustainable fiber-reinforced polymer composites and their characterization before and after accelerated aging. Industrial Crops and Products, 168, p.113568. DOI: https://doi.org/10.1016/j.indcrop.2021.113568
Ramesh, M., Deepa, C., Kumar, L.R., Sanjay, M. and Siengchin, S., 2022. Life-cycle and environmental impact assessments on processing of plant fibers and its bio-composites: A critical review. Journal of Industrial Textiles, 51(4_suppl), pp.5518S-5542S. DOI: https://doi.org/10.1177/1528083720924730
Fitzgerald, A., Proud, W., Kandemir, A., Murphy, R.J., Jesson, D.A., Trask, R.S., Hamerton, I. and Longana, M.L., 2021. A life cycle engineering perspective on biocomposites as a solution for a sustainable recovery. Sustainability, 13(3), p.1160. DOI: https://doi.org/10.3390/su13031160
Peças, P., Ribeiro, I., Carvalho, H., Silva, A., Salman, H. and Henriques, E., 2019. Ramie and jute as natural fibers in a composite part—a life cycle engineering comparison with an aluminum part. In Green Composites for Automotive Applications (pp. 253-284). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-102177-4.00011-2
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mostafizur Rahman, Mohammad Bellal Hoque, Foisal Ahmed , Ekra Ahmed , Md Ariful Hossain Faisal, Tamanna Hasan, Badhon Baria , Dip Das, Md. Sohan Sheikh , Ruhul Amin Khan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.