Taro Fiber: A Comprehensive Review of Extraction, Properties, Applications, and Future Perspectives

Authors

  • Mohammad Bellal Hoque Deaprtment of Textile Engineering, World University of Bangladesh, Dhaka, Bangladesh and Deaprtment of Textile Engineering, Dhaka University of Engineering and Technology, Dhaka, Bangladesh https://orcid.org/0000-0001-6546-0065 (unauthenticated)
    • Tanzim Hossain Oyshi Deaprtment of Textile Engineering, World University of Bangladesh, Dhaka, Bangladesh
      • Badhon Baria Deaprtment of Textile Engineering, World University of Bangladesh, Dhaka, Bangladesh
        • Masuma Jahan Tanjila Deaprtment of Textile Engineering, World University of Bangladesh, Dhaka, Bangladesh
          • Umma Ayman Deaprtment of Textile Engineering, World University of Bangladesh, Dhaka, Bangladesh
            • Md. Imran Hosen Deaprtment of Textile Engineering, World University of Bangladesh, Dhaka, Bangladesh
              • Sohan Sheikh Deaprtment of Textile Engineering, World University of Bangladesh, Dhaka, Bangladesh
                • Md. Mostafizur Rahman Deaprtment of Textile Engineering, World University of Bangladesh, Dhaka, Bangladesh and Deaprtment of Textile Engineering, Dhaka University of Engineering and Technology, Dhaka, Bangladesh https://orcid.org/0000-0003-3709-949X (unauthenticated)

                  DOI:

                  https://doi.org/10.38032/jea.2025.02.001

                  Keywords:

                  Natural Fiber, Taro Fiber, Extraction, Properties, Applications

                  Abstract

                  Taro fiber, derived from the Colocasia esculenta plant, has gained attention as a sustainable alternative to synthetic and conventional natural fibers. This review explores extraction techniques, physicochemical properties, modifications, applications, and future directions of taro fiber. Taro fiber contains a high proportion of cellulose, offers low density, and demonstrates competitive tensile strength. These characteristics support its suitability for applications in textiles, biocomposites, biomedical devices, packaging, and environmental remediation. Recent developments in enzymatic retting, mechanical decortication, and green chemical treatments have enhanced extraction efficiency and quality. However, challenges such as scalability, economic viability, and environmental concerns require targeted solutions. This review identifies key research gaps including limited life cycle assessments, insufficient in vivo biocompatibility data, and lack of standardized industrial protocols. Future work should focus on sustainable production methods, advanced functionalization, integration into circular economy frameworks, and interdisciplinary collaboration to unlock the full potential of taro fiber across sectors.

                  References

                  Tosif, M.M., Najda, A., Klepacka, J., Bains, A., Chawla, P., Kumar, A., Sharma, M., Sridhar, K., Gautam, S.P. and Kaushik, R., 2022. A concise review on taro mucilage: Extraction techniques, chemical composition, characterization, applications, and health attributes. Polymers, 14(6), p.1163. DOI: https://doi.org/10.3390/polym14061163

                  Tober, M., 2011. PubMed, ScienceDirect, Scopus or Google Scholar–Which is the best search engine for an effective literature research in laser medicine? Medical Laser Application, 26(3), pp.139-144. DOI: https://doi.org/10.1016/j.mla.2011.05.006

                  Mohammadi, M., Ishak, M.R. and Sultan, M.T.H., 2024. Exploring chemical and physical advancements in surface modification techniques of natural fiber reinforced composite: a comprehensive review. Journal of Natural Fibers, 21(1), p.2408633.

                  Abbate, S., Centobelli, P. and Di Gregorio, M., 2025. Wine waste valorisation: crushing the research domain. Review of Managerial Science, 19(3), pp.963-998. DOI: https://doi.org/10.1007/s11846-024-00779-5

                  Lopez Cornelio, D., 2024. Land use intensification and bio-resource utilisation in the south pacific islands [Internet]. Technological University Dublin. Available from: https://arrow.tudublin.ie/ijir/vol5/iss1/1/ (Accessed: February 10,2025)

                  Cosmas, F., Bigambo, P. and Mgani, Q., 2021. Modification of the Mechanical and Structural Properties of Sisal Fiber for Textile Applications. Journal of Natural Fibers, 19, pp.1-12. DOI: https://doi.org/10.1080/15440478.2021.2002772

                  Ngo, H., Nguyen, P., Ikeda, A. and Liang, L., 2024. Environmentally Sound Recycling of E-waste: A Sustainable Method Toward a More Resource-Efficient Circular Economy. In: Stefanakis, A.I., Nikolaou, I.E. (eds) Circular Economy and Sustainable Development. Circular Economy and Sustainability, pp.425-454. DOI: https://doi.org/10.1007/978-3-031-66007-8_24

                  Schmidt, B.M., 2017. Ethnobotany. In: Ethnobotany. Chichester, UK: John Wiley & Sons, Ltd, pp.1-109. DOI: https://doi.org/10.1002/9781118961933.ch1

                  Raghoo, Y., Ramasawmy, H., Gooroochurn, M., Brown, N. and Seeboo, A., 2024. Use of biowax derived from Colocasia esculenta leaves for effective reduction in the hydrophilicity of Musa acuminata fibres for its potential application in cementitious composites. Environment, Development and Sustainability, pp.1-29. DOI: https://doi.org/10.1007/s10668-024-04707-1

                  Gheorghita Puscaselu, R., Lobiuc, A., Dimian, M. and Covasa, M., 2020. Alginate: From food industry to biomedical applications and management of metabolic disorders. Polymers, 12(10), p.2417. DOI: https://doi.org/10.3390/polym12102417

                  Chauhan, V.B.S., Mallick, S.N., Pati, K., Arutselvan, R. and Nedunchezhiyan, M., 2022. Status and Importance of Underexploited Tuber Crops in Relation to Nutritional Security and Economic Prosperity. Compendium for Winter School on “Unexpected Vegetables: Unexplored Treasure Trove for Food, Nutritional and Economic Security, pp.246-264.

                  Saxby, S.M., 2020. The potential of Taro (Colocasia esculenta) as a dietary prebiotic source for the prevention of colorectal cancer (Doctoral dissertation, University of Hawai'i at Manoa).

                  Sapuan, S.M., Abral, H., Jamal, T., Thakur, V.K., Nazrin, A. and Sherwani, S., 2024. Plant Tuber and Root-Based Biocomposites: Development, Characterization, and Applications. Vol. 277. Elsevier.

                  Tausif, M., Jabbar, A., Naeem, M.S., Basit, A., Ahmad, F. and Cassidy, T., 2018. Cotton in the new millennium: advances, economics, perceptions and problems. Textile Progress, 50(1), pp.1-66. DOI: https://doi.org/10.1080/00405167.2018.1528095

                  Phiri, R., Mavinkere Rangappa, S., Siengchin, S., Oladijo, O.P. and Dhakal, H.N., 2023. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research, 6(4), pp.436-450. DOI: https://doi.org/10.1016/j.aiepr.2023.04.004

                  Joan Jane J. Sanchez, Honorio, E.T., Julius John Ceasar A. Mosquito and Philip Donald C. Sanchez, 2023. Development and evaluation of taro (Colocasia esculenta) leaves and banana pseudo stem (Musa acuminata) as an alternative hydrophobic paper bag. Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), 9, pp.232-239. DOI: https://doi.org/10.5109/7157977

                  Singla, D., Singh, A., Dhull, S.B., Kumar, P., Malik, T. and Kumar, P., 2020. Taro starch: Isolation, morphology, modification and novel applications concern - A review. International Journal of Biological Macromolecules, 163, pp.1283-1290. DOI: https://doi.org/10.1016/j.ijbiomac.2020.07.093

                  Alam, M.S., Kaur, J., Khaira, H. and Gupta, K., 2016. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Critical Reviews in Food Science and Nutrition, 56(3), pp.445-475. DOI: https://doi.org/10.1080/10408398.2013.779568

                  Luchese, C.L., Engel, J.B. and Tessaro, I.C., 2024. A review on the mercerization of natural fibers: Parameters and effects. Korean Journal of Chemical Engineering, 41(3), pp.571-587. DOI: https://doi.org/10.1007/s11814-024-00112-6

                  Diharjo, K., Andoko, A., Soedarsono, J.W., Gapsari, F., Rangappa, S.M. and Siengchin, S., 2025. Enhanced composite performance: Evaluating silane treatment on Cordia dichotoma Fibers. Results in Engineering, 25, p.104260. DOI: https://doi.org/10.1016/j.rineng.2025.104260

                  Wang, X., Tian, W., Ye, Y., Chen, Y., Wu, W., Jiang, S. et al., 2024. Surface modifications towards superhydrophobic wood-based composites: Construction strategies, functionalization, and perspectives. Advances in Colloid and Interface Science, 326, p.103142. DOI: https://doi.org/10.1016/j.cis.2024.103142

                  Nurazzi, N.M., Shazleen, S.S., Aisyah, H.A., Asyraf, M.R.M., Sabaruddin, F.A., Mohidem, N.A. et al., 2021. Effect of silane treatments on mechanical performance of kenaf fibre reinforced polymer composites: a review. Functional Composites and Structures, 3(4), p.045003. DOI: https://doi.org/10.1088/2631-6331/ac351b

                  Sánchez, D., Brack, L., Postma, N., Pigram, A. and Meagher, P.J., 2016. Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials, 106, pp.24-45. DOI: https://doi.org/10.1016/j.biomaterials.2016.08.011

                  Troy, E., Tilbury, M.A., Power, A.M. and Wall, J.G., 2021. Nature-based biomaterials and their application in biomedicine. Polymers, 13(19), p.3321. DOI: https://doi.org/10.3390/polym13193321

                  Prorokova, N.P., Odintsova, O.I., Rumyantseva, V.E., Rumyantsev, E.V. and Konovalova, V.S., 2023. Giving improved and new properties to fibrous materials by surface modification. Coatings, 13(1), p.139. DOI: https://doi.org/10.3390/coatings13010139

                  Mapossa, A.B., da Silva Júnior, A.H., de Oliveira, C.R.S. and Mhike, W., 2023. Thermal, morphological and mechanical properties of multifunctional composites based on biodegradable polymers/bentonite clay: A review. Polymers, 15(16). DOI: https://doi.org/10.3390/polym15163443

                  Daza-Orsini, S.M., Medina-Jaramillo, C., Caicedo-Chacon, W.D., Ayala-Valencia, G. and López-Córdoba, A., 2024. Isolation of taro peel cellulose nanofibers and its application in improving functional properties of taro starch nanocomposites films. International Journal of Biological Macromolecules, 273(Pt 2), p.132951. DOI: https://doi.org/10.1016/j.ijbiomac.2024.132951

                  Fahad Halim, A.F.M., Poinern, G.E.J., Fawcett, D., Sharma, R., Surendran, S. and Rajeshkannan, 2025. Biomass‐derived carbon nanomaterials: Synthesis and applications in textile wastewater treatment, sensors, energy storage, and conversion technologies. CleanMat, 2(1), pp.4-58. DOI: https://doi.org/10.1002/clem.15

                  Song, Z., Xiong, X. and Huang, G., 2023. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. Ultrasonics Sonochemistry, 95, p.106416. DOI: https://doi.org/10.1016/j.ultsonch.2023.106416

                  Boahemaa, L.V., Dzandu, B., Amissah, J.G.N., Akonor, P.T. and Saalia, F.K., 2024. Physico-chemical and functional characterization of flour and starch of taro (Colocasia esculenta) for food applications. Food and Humanity, 2, p.100245. DOI: https://doi.org/10.1016/j.foohum.2024.100245

                  Zhang, F., Si, Y., Yu, J. and Ding, B., 2023. Electrospun porous engineered nanofiber materials: A versatile medium for energy and environmental applications. Chemical Engineering Journal, 456, p.140989. DOI: https://doi.org/10.1016/j.cej.2022.140989

                  Nagar, C.K., 2023. Studies on the preparation of starch from taro (Colocasia Esculenta) and its value addition (Doctoral dissertation, Department of Agricultural Processing and Food Engineering, OUAT, Bhubaneswar).

                  John, M.J. and Anandjiwala, R.D., 2009. Surface modification and preparation techniques for textile materials. In: Surface Modification of Textiles. Elsevier, pp.1-25. DOI: https://doi.org/10.1533/9781845696689.1

                  Gulati, K., Rachna, R.S., Kumar, M., Jagdeva, G. and Kumar, S., 2023. Polyvinyl Alcohol Composite Films Reinforced with Taro (Colocasia esculenta) Stem Fiber: Thermal, Mechanical and Biodegradation Studies. Indian Journal of Engineering and Materials Sciences, 30(2), pp.290-297. DOI: https://doi.org/10.56042/ijems.v30i2.1499

                  Ahmad, H., Chhipi-Shrestha, G., Hewage, K. and Sadiq, R., 2022. A comprehensive review on construction applications and life cycle sustainability of natural fiber biocomposites. Sustainability, 14(23), p.15905. DOI: https://doi.org/10.3390/su142315905

                  Shah, Y.A., Saeed, F., Afzaal, M., Waris, N., Ahmad, S., Shoukat, N. and Ateeq, H., 2022. Industrial applications of taro (Colocasia esculenta) as a novel food ingredient: A review. Journal of Food Processing and Preservation, 46(11), p.e16951. DOI: https://doi.org/10.1111/jfpp.16951

                  Rani, S., Kumar, P. and Kumar, V., 2024. Removal of organic pollutants from paper mill effluent using Taro (Colocasia esculenta L. Schott) in an electro-assisted horizontal subsurface flow constructed wetland: Experimental and kinetic studies. Environmental Monitoring and Assessment, 197(1), p.48. DOI: https://doi.org/10.1007/s10661-024-13523-z

                  Badran, A.M., Utra, U., Yussof, N.S. and Bashir, M.J.K., 2023. Advancements in adsorption techniques for sustainable water purification: A focus on lead removal. Separations, 10(11), p.565. DOI: https://doi.org/10.3390/separations10110565

                  Anirudh, M.K., Lal, A.M.N., Harikrishnan, M.P., Jose, J., Thasim, J., Warrier, A.S. et al., 2024. Sustainable seedling pots: Development and characterisation of banana waste and natural fibre-reinforced composites for horticultural applications. International Journal of Biological Macromolecules, 270(Pt 1), p.132070. DOI: https://doi.org/10.1016/j.ijbiomac.2024.132070

                  Caliskan, A., Abdullah, N., Ishak, N., Ametefe, D.S. and Caliskan, I.T., 2025. Systematic literature review on the utilization of tuber crop skins in the context of circular agriculture. International Journal of Recycling of Organic Waste in Agriculture, 14(1).

                  Kiessling, R.A., 2024. Affordable Housing: Exploring Mass Timber in Hawaii as an Alternative Building Material (Doctoral dissertation, University of Hawai'i at Manoa).

                  Richmond, R.L., 2020. Highlighting the unique challenges and differences of building with mass timber. California Polytechnic State University. Available at: https://digitalcommons.calpoly.edu/cmsp/363/ (Accessed: February 15, 2025).

                  Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P. et al., 2016. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(8), p.715. DOI: https://doi.org/10.1071/BT12225_CO

                  Ali, S.S., Al-Tohamy, R., Koutra, E., Moawad, M.S., Kornaros, M., Mustafa, A.M. et al., 2021. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Science of the Total Environment, 792, p.148359. DOI: https://doi.org/10.1016/j.scitotenv.2021.148359

                  Nguyen, T.A.P., 2019. Energy-Food-Water Security Nexus in Vietnam (Doctoral dissertation, University of Technology Sydney (Australia)).

                  Nair, K.P., 2023. Global commercial potential of subterranean crops: Agronomy and value addition. Cham: Springer Nature. DOI: https://doi.org/10.1007/978-3-031-29646-8

                  McAuliffe, G.A., Takahashi, T. and Lee, M.R.F., 2020. Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. International Journal of Life Cycle Assessment, 25(2), pp.208-221.

                  Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H. and AbdulGhani, A., 2022. Green product innovation: A means towards achieving global sustainable product within biodegradable plastic industry. Journal of Cleaner Production, 363, p.132506. DOI: https://doi.org/10.1016/j.jclepro.2022.132506

                  Sreekala, M.S., Ravindran, L., Goda, K. and Thomas, S. eds., 2023. Handbook of Natural Polymers, Volume 1: Sources, Synthesis, and Characterization. Elsevier. DOI: https://doi.org/10.1016/B978-0-323-99853-6.00023-1

                  Shah, K.K., Modi, B., Pandey, H.P., Subedi, A., Aryal, G., Pandey, M. et al., 2021. Diversified crop rotation: An approach for sustainable agriculture production. Advances in Agriculture, 2021, pp.1-9. DOI: https://doi.org/10.1155/2021/8924087

                  Hassabo, A.G., Gouda, N.Z., Khaleed, N., Shaker, S., El-Salam, A. and Mohamed, N.A., 2024. Enzymes in Digital Printing of Polyamide Fabric. Journal of Textiles, Coloration and Polymer Science, 21(1), pp.149-160.

                  Mohammadi, M., Ishak, M.R. and Sultan, M.T.H., 2024. Exploring chemical and physical advancements in surface modification techniques of natural fiber reinforced composite: a comprehensive review. Journal of Natural Fibers, 21(1), p.2408633. DOI: https://doi.org/10.1080/15440478.2024.2408633

                  Reghunadhan, A., Akhina, H. and Thomas, S. eds., 2024. Applications of Biopolymers in Science, Biotechnology, and Engineering. John Wiley & Sons Incorporated. DOI: https://doi.org/10.1002/9781119783473

                  Kunz, J., May, S. and Schmidt, H.J., 2020. Sustainable luxury: current status and perspectives for future research. Business Research, 13(2), pp.541-601. DOI: https://doi.org/10.1007/s40685-020-00111-3

                  Singh, A.K., Singh, A., Mane, R. and Lee, Y.S., 2024. Sustainable food packaging. In: Future Crops and Processing Technologies for Sustainability and Nutritional Security. Boca Raton: CRC Press, pp.174-199. DOI: https://doi.org/10.1201/9781003280170-10

                  McAuliffe, G.A., Takahashi, T. and Lee, M.R.F., 2020. Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. International Journal of Life Cycle Assessment, 25(2), pp.208-221. DOI: https://doi.org/10.1007/s11367-019-01679-7

                  Matthews, P.J. and Nguyen, D.V., 2020. Taro: Origins and development. In: Encyclopedia of Global Archaeology. Cham: Springer International Publishing, pp.10529-10532. DOI: https://doi.org/10.1007/978-3-030-30018-0_2190

                  Maurya, M., Thirupataiah, M., Thulasi, M. and Gharat, P.R., 2024. In: Futuristic Trends in Herbal Medicines and Food Products. IIP Series.

                  Downloads

                  Published

                  19-06-2025

                  Issue

                  Section

                  Review Articles

                  How to Cite

                  Hoque, M.B. (2025) “Taro Fiber: A Comprehensive Review of Extraction, Properties, Applications, and Future Perspectives”, Journal of Engineering Advancements, 6(02), pp. 31–40. doi:10.38032/jea.2025.02.001.

                  Most read articles by the same author(s)