From Waste to Strength: A Comprehensive Review on Using Fly Ash in Composites with Enhanced Mechanical Properties

Authors

  • Md. Tauhidur Rahman Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
  • Md Sanaul Rabbi Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh
  • M. A. Shadab Siddiqui Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chattogram-4349, Bangladesh

DOI:

https://doi.org/10.38032/jea.2024.04.001

Keywords:

Fly Ash, Composites, Mechanical Properties

Abstract

This article explores the diverse applications of fly ash (FA), a by-product generated during the combustion of coal. The introductory segment thoroughly comprehends the origins, composition, and widespread occurrence of FA. FA, which comprises an estimated 38% of worldwide power generation, frequently encounters disposal and storage obstacles on account of its classification as non-hazardous waste in the majority of countries. The environmental issues linked to the dispersal of FA are underscored in the problem statement, which further emphasizes the urgency for sustainable alternatives. Due to the fugitive emissions and potential health hazards associated with metal melting in FA, it is critical to investigate novel applications and disposal techniques immediately. Environmental sustainability is a primary focus of research, with the development of synthetic FA composites being one such alternative. The analysis presents significant findings that underscore the wide-ranging applications of FA. These applications include its utilization as a filler in composites, as well as its incorporation into cement and geo-polymerization processes. Notably, (10-20) wt. % Nano-FA enhances epoxy-based composites, showcasing remarkable improvements in tensile strength, flexural strength, and impact resistance. In thermoplastic composites, substantial enhancements occur within the (5–10) wt. % FA range, but exceeding optimal ranges weakens matrix-fiber interaction, leading to diminishing returns. The article emphasizes the criticality of FA in improving the mechanical and thermodynamic characteristics of substances, specifically within the domain of composites. The investigation into FA nanoparticles, including their processing techniques and surface treatments, unveils encouraging prospects for enhancing material characteristics.

References

Yousuf, A., Manzoor, S.O., Youssouf, M., Malik, Z.A. and Khawaja, K.S., 2020. Fly ash: production and utilization in India-an overview. J Mater Environ Sci, 11(6), pp.911-921.

Rabbi, M. S., Rahman, T., Roshid, M. M., & Siddiqui, M. S. (2024). Influence of chemical treatment of fly ash on mechanical, thermal, and water absorption characteristics of PS/SBC nanocomposite. SPE Polymers, 5(4), pp.663-679. DOI: https://doi.org/10.1002/pls2.10152

Lanzerstorfer, C., 2018. Pre-processing of coal combustion fly ash by classification for enrichment of rare earth elements. Energy Reports, 4, pp.660-663. DOI: https://doi.org/10.1016/j.egyr.2018.10.010

Zierold, K.M. and Odoh, C., 2020. A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. Reviews on environmental health, 35(4), pp.401-418. DOI: https://doi.org/10.1515/reveh-2019-0039

Praharaj, M.K., A Comparison Study between C and F Fly Ash Aggregates.

“Coal Fly Ash - User Guideline - Portland Cement Concrete - User Guidelines for Waste and Byproduct Materials in Pavement Construction - FHWA-RD-97-148.” Accessed: Dec. 09, 2023. [Online]. Available: https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/cfa53.cfm

Standard, A.S.T.M., 2003. C595. Standard specification for blended hydraulic cements.

Pappu, A. and Thakur, V.K., 2017. Towards sustainable micro and nano composites from fly ash and natural fibers for multifunctional applications. Vacuum, 146, pp.375-385.

Garbacz, A. and Sokołowska, J.J., 2013. Concrete-like polymer composites with fly ashes–Comparative study. Construction and building materials, 38, pp.689-699. DOI: https://doi.org/10.1016/j.conbuildmat.2012.08.052

Suraneni, P., Burris, L., Shearer, C.R. and Hooton, R.D., 2021. ASTM C618 fly ash specification: Comparison with other specifications, shortcomings, and solutions. ACI Mater. J, 118(1), p.157167. DOI: https://doi.org/10.14359/51725994

Singh, N.B., 2022. 19-Fly ash in the construction industry. Handbook of Fly Ash; Kamal, KK, Ed.; Butterworth-Heinemann: Oxford, UK, pp.565-610. DOI: https://doi.org/10.1016/B978-0-12-817686-3.00025-6

McCarthy, M.J. and Dyer, T.D., 2019. Pozzolanas and pozzolanic materials. Lea’s Chemistry of Cement and Concrete, 5, pp.363-467. DOI: https://doi.org/10.1016/B978-0-08-100773-0.00009-5

Sargent, P., 2015. The development of alkali-activated mixtures for soil stabilisation. In Handbook of alkali-activated cements, mortars and concretes (pp. 555-604). Woodhead Publishing. DOI: https://doi.org/10.1533/9781782422884.4.555

Seed, H.B., Woodward, R.J. and Lundgren, R., 1964. Fundamental aspects of the Atterberg limits. Journal of the Soil Mechanics and Foundations Division, 90(6), pp.75-106. DOI: https://doi.org/10.1061/JSFEAQ.0000685

Shirkhanloo, S., Najafi, M., Kaushal, V. and Rajabi, M., 2021. A comparative study on the effect of class C and class F fly ashes on geotechnical properties of high-plasticity clay. CivilEng, 2(4), pp.1009-1018. DOI: https://doi.org/10.3390/civileng2040054

Ghavami, S., Jahanbakhsh, H. and Moghaddasnezhad, F., 2020. Laboratory study on stabilization of kaolinite clay with cement and cement kiln dust. Amirkabir Journal of Civil Engineering, 52(4), pp.935-948.

Kaushal, V. and Guleria, S.P., 2016, March. Study of Tensile Strength and Mineralogical Behavior of Flyash–Lime-Gypsum Composite Reinforced with Jute Fibers. In National Conference on Innovations without limits in Civil Engineering (IWLCE 2016).

Ghavami, S. and Rajabi, M., 2021. Investigating the influence of the combination of cement kiln dust and fly ash on compaction and strength characteristics of high-plasticity clays. Journal of Civil Engineering and Materials Application, 5(1), pp.9-16.

Ahmad, S., 2014. Preparation of eco-friendly natural hair fiber reinforced polymeric composite (FRPC) material by using of polypropylene and fly ash: a review. International Journal of Scientific & Engineering Research, 5(11), pp.969-972.

Tiwari, S., Srivastava, K., Gehlot, C.L. and Srivastava, D., 2020. Epoxy/fly ash from thermal power plant/nanofiller nanocomposite: studies on mechanical and thermal properties: a review. Int. J. Waste Resour, 10, pp.1-16. DOI: https://doi.org/10.35248/2252-5211.20.10.375

Rajak, D.K., Raj, A., Guria, C. and Pathak, A.K., 2017. Grinding of Class-F fly ash using planetary ball mill: A simulation study to determine the breakage kinetics by direct-and back-calculation method. south african journal of chemical engineering, 24(1), pp.135-147.

Chu, Y.S., Davaabal, B., Kim, D.S., Seo, S.K., Kim, Y., Ruescher, C. and Temuujin, J., 2019. Reactivity of fly ashes milled in different milling devices. Reviews on Advanced Materials Science, 58(1), pp.179-188.

Giergiczny, Z., 2019. Fly ash and slag. Cement and concrete research, 124, p.105826. DOI: https://doi.org/10.1016/j.cemconres.2019.105826

Chu, Y.S., Davaabal, B., Kim, D.S., Seo, S.K., Kim, Y., Ruescher, C. and Temuujin, J., 2019. Reactivity of fly ashes milled in different milling devices. Reviews on Advanced Materials Science, 58(1), pp.179-188. DOI: https://doi.org/10.1515/rams-2019-0028

Rajak, D.K., Raj, A., Guria, C. and Pathak, A.K., 2017. Grinding of Class-F fly ash using planetary ball mill: A simulation study to determine the breakage kinetics by direct-and back-calculation method. south african journal of chemical engineering, 24(1), pp.135-147. DOI: https://doi.org/10.1016/j.sajce.2017.08.002

Sumesh, K.R., Kavimani, V., Rajeshkumar, G., Indran, S. and Saikrishnan, G., 2021. Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. Journal of Material Cycles and Waste Management, 23(4), pp.1277-1288.

Tiwari, S., Srivastava, K., Gehlot, C.L. and Srivastava, D., 2020. Studies on mechanical and thermal properties of epoxy/fly ash/nanofiller nanocomposite: a review. International Journal of Civil Engineering and Technology, 11(2), pp.120-139. DOI: https://doi.org/10.34218/IJCIET.11.2.2020.013

Sah, S.K., Nirala, B., Kumar, A. and Anand, A., Study on the Characterization and Classification of Fly Ash Samples Obtained Locally.

Tantermsirikul, S., Saengsoy, W., Kaewmanee, K., Julnipitawong, P. and Samranwanich, T., 2023, June. Toward effective utilization of fly ash and multi-binder system with fly ash in concrete. In Journal of Physics: Conference Series (Vol. 2521, No. 1, p. 012002). IOP Publishing.

Tantermsirikul, S., Saengsoy, W., Kaewmanee, K., Julnipitawong, P. and Samranwanich, T., 2023, June. Toward effective utilization of fly ash and multi-binder system with fly ash in concrete. In Journal of Physics: Conference Series (Vol. 2521, No. 1, p. 012002). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/2521/1/012002

Libre Jr, R.G.D., Leaño Jr, J.L., Lopez, L.F., Cacanando, C.J.D., Promentilla, M.A.B. and Ongpeng, J.M.C., 2023. Microstructure and mechanical performance of bamboo fiber reinforced mill-scale—Fly-ash based geopolymer mortars. Cleaner Chemical Engineering, 6, p.100110.

Lazorenko, G., Kasprzhitskii, A., Yavna, V., Mischinenko, V., Kukharskii, A., Kruglikov, A., Kolodina, A. and Yalovega, G., 2020. Effect of pre-treatment of flax tows on mechanical properties and microstructure of natural fiber reinforced geopolymer composites. Environmental Technology & Innovation, 20, p.101105. DOI: https://doi.org/10.1016/j.eti.2020.101105

Zulfiati, R. and Idris, Y., 2019, April. Mechanical properties of fly ash-based geopolymer with natural fiber. In Journal of Physics: Conference Series (Vol. 1198, No. 8, p. 082021). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1198/8/082021

Sugiman, S. and Setyawan, P.D., 2014. Surface treatment of fly ash for improving the tensile strength of fly ash/unsaturated polyester composites. Makara Journal of Technology, 17(3), p.5. DOI: https://doi.org/10.7454/mst.v17i3.2932

Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., Yu, W.H. and Wang, H., 2016. Fly ash-based geopolymer: clean production, properties and applications. Journal of cleaner production, 125, pp.253-267. DOI: https://doi.org/10.1016/j.jclepro.2016.03.019

“What is a Composite Material? (A Definitive Guide) - TWI.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.twi-global.com/technical-knowledge/faqs/what-is-a-composite-material

Mulinari, D.R., Saron, C., Carvalho, K.C. and Voorwald, H.J., 2011. Thermoplastic and thermosetting composites with natural fibers.

Berzin, F. and Vergnes, B., 2021. Thermoplastic natural fiber based composites. In Fiber Reinforced Composites (pp. 113-139). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-821090-1.00015-6

Mahendran, A.R., Wuzella, G., Lammer, H. and Gindl-Altmutter, W., 2021. Thermosetting natural fiber based composites. In Fiber Reinforced Composites (pp. 187-214). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-821090-1.00014-4

Salah, N., Alfawzan, A.M., Saeed, A., Alshahrie, A. and Allafi, W., 2019. Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Scientific Reports, 9(1), p.20288. DOI: https://doi.org/10.1038/s41598-019-56777-1

Ez‐Zahraoui, S., Kassab, Z., Ablouh, E.H., Sehaqui, H., Bouhfid, R., Alami, J., El Achaby, M. and Qaiss, A.E.K., 2021. Effect of fly ash and coupling agent on the structural, morphological, thermal, and mechanical properties of polyamide 6/acrylonitrile‐butadiene‐styrene blend. Polymer Composites, 42(7), pp.3518-3538. DOI: https://doi.org/10.1002/pc.26076

Chowdhury, S., Roy, S. and Singh, S.P., 2023. Performance assessment of three alkali-treated fly ashes as a pavement base-course material. Construction and Building Materials, 365, p.130110. DOI: https://doi.org/10.1016/j.conbuildmat.2022.130110

Khoshnoud, P. and Abu‐Zahra, N., 2019. The effect of particle size of fly ash (FA) on the interfacial interaction and performance of PVC/FA composites. Journal of Vinyl and Additive Technology, 25(2), pp.134-143. DOI: https://doi.org/10.1002/vnl.21633

Xue, C., Nan, H., Lu, Y., Chen, H., Zhao, C. and Xu, S., 2021. Effects of inorganic‐organic surface modification on the mechanical and thermal properties of poly (vinyl chloride) composites reinforced with fly‐ash. Polymer Composites, 42(4), pp.1867-1877. DOI: https://doi.org/10.1002/pc.25942

Satapathy, S. and Bihari Nando, G., 2016. Mechanical, dynamic mechanical, and thermal characterization of fly ash and nanostructured fly ash‐waste polyethylene/high‐density polyethylene blend composites. Polymer composites, 37(11), pp.3256-3268. DOI: https://doi.org/10.1002/pc.23524

Raju, G.M., Madhu, G.M., Khan, M.A. and Reddy, P.D.S., 2018. Characterizing and modeling of mechanical properties of epoxy polymer composites reinforced with fly ash. Materials Today: Proceedings, 5(14), pp.27998-28007. DOI: https://doi.org/10.1016/j.matpr.2018.10.040

Hanumantharaya, R., Kumar, B.P. and Ajith, B.S., 2021. Mechanical and wear behaviour of flyash reinforced epoxy composites. Journal of Mines, Metals and Fuels, pp.78-83. DOI: https://doi.org/10.18311/jmmf/2021/30099

Mohammed Altaweel, A.M., Ranganathaiah, C., Kothandaraman, B., Raj, J.M. and Chandrashekara, M.N., 2011. Characterization of ACS modified epoxy resin composites with fly ash and cenospheres as fillers: mechanical and microstructural properties. polymer composites, 32(1), pp.139-146. DOI: https://doi.org/10.1002/pc.21030

Nagendiran, S., Badghaish, A., Hussein, I.A., Shuaib, A.N., Furquan, S.A. and Al‐Mehthel, M.H., 2016. Epoxy/oil fly ash composites prepared through in situ polymerization: enhancement of thermal and mechanical properties. Polymer Composites, 37(2), pp.512-522. DOI: https://doi.org/10.1002/pc.23207

Tiwari, S., Gehlot, C.L. and Srivastava, D., 2021. Synergistic influence of CaCO3 nanoparticle on the mechanical and thermal of fly ash reinforced epoxy polymer composites. Materials Today: Proceedings, 43, pp.3375-3385.

Sim, J., Kang, Y., Kim, B.J., Park, Y.H. and Lee, Y.C., 2020. Preparation of fly ash/epoxy composites and its effects on mechanical properties. Polymers, 12(1), p.79. DOI: https://doi.org/10.3390/polym12010079

Tiwari, S., Gehlot, C.L. and Srivastava, D., 2020. Epoxy/Fly ash from Indian soil Chulha/nano CaCO3 nanocomposite: Studies on mechanical and thermal properties. Polymer Composites, 41(8), pp.3237-3249. DOI: https://doi.org/10.1002/pc.25615

Ozsoy, I., Demirkol, A., Mimaroglu, A., Unal, H. and Demir, Z., 2015. The influence of micro-and nano-filler content on the mechanical properties of epoxy composites. Strojniski Vestnik/Journal of Mechanical Engineering, 61(10). DOI: https://doi.org/10.5545/sv-jme.2015.2632

Yin, J., Bian, B., Ge, Y. and Ma, Q., 2018. Effect of fly ash on the overall performance of particulate‐filled polymer composite for precision machine tools. Polymer Composites, 39(11), pp.3986-3993. DOI: https://doi.org/10.1002/pc.24442

Nilagiri Balasubramanian, K.B. and Ramesh, T., 2018. Role, effect, and influences of micro and nano‐fillers on various properties of polymer matrix composites for microelectronics: a review. Polymers for Advanced Technologies, 29(6), pp.1568-1585. DOI: https://doi.org/10.1002/pat.4280

Gupta, D., Chaudhary, A.K., Singh, V.K., Verma, D., Goh, K.L. and Sharma, M., 2023. Thermo-mechanical analysis of bhimal fiber (Grewia optiva)-CaCO3/flyash/TiO2 reinforced epoxy bio-composites. Industrial Crops and Products, 204, p.117341. DOI: https://doi.org/10.1016/j.indcrop.2023.117341

Mohd Nasir, N.H., Usman, F., Woen, E.L., Ansari, M.N.M. and Supian, A.B.M., 2023. Microstructural and Thermal Behaviour of Composite Material from Recycled Polyethylene Terephthalate and Fly Ash. Recycling, 8(1), p.11. DOI: https://doi.org/10.3390/recycling8010011

Shimpi, N.G., Verma, J. and Mishra, S., 2010. Dispersion of nano CaCO3 on PVC and its influence on mechanical and thermal properties. Journal of composite materials, 44(2), pp.211-219. DOI: https://doi.org/10.1177/0021998309344637

Chindaprasirt, P., Jitsangiam, P. and Rattanasak, U., 2022. Hydrophobicity and efflorescence of lightweight fly ash geopolymer incorporated with calcium stearate. Journal of Cleaner Production, 364, p.132449. DOI: https://doi.org/10.1016/j.jclepro.2022.132449

Tiwari, S., Gehlot, C.L. and Srivastava, D., 2021. Synergistic influence of CaCO3 nanoparticle on the mechanical and thermal of fly ash reinforced epoxy polymer composites. Materials Today: Proceedings, 43, pp.3375-3385. DOI: https://doi.org/10.1016/j.matpr.2020.06.205

Cosnita, M., Balas, M. and Cazan, C., 2022. The influence of fly ash on the mechanical properties of water immersed all waste composites. Polymers, 14(10), p.1957.

Ashok, K., Ajith, D., Bibin, C., Sheeja, R. and Nishanth, R., 2022. Influence of nanofiller lignite fly ash on tribo-mechanical performance of Sansevieria roxburghiana fiber reinforced epoxy composites. Journal of Natural Fibers, 19(13), pp.6000-6014.

Maurya, S.D., Singh, M.K., Amanulla, S., Yadav, S.N. and Nayak, S.K., 2022. Mechanical, electrical and thermal properties of nylon-66/flyash composites: Effect of flyash. Organic Polymer Material Research, 4(2). DOI: https://doi.org/10.30564/opmr.v4i2.5233

Ge, J.C., Yoon, S.K. and Choi, N.J., 2018. Application of fly ash as an adsorbent for removal of air and water pollutants. Applied Sciences, 8(7), p.1116. DOI: https://doi.org/10.3390/app8071116

Kesarla, H., Rohit, K., Mohod, A., Tanji, S., Mane, O. and Venkatachalam, G., 2018. Study on Tensile behavior of fly ash reinforced hybrid polymer matrix composite. materials today: proceedings, 5(5), pp.11922-11932.

Sukmak, P., Horpibulsuk, S. and Shen, S.L., 2013. Strength development in clay–fly ash geopolymer. Construction and building Materials, 40, pp.566-574. DOI: https://doi.org/10.1016/j.conbuildmat.2012.11.015

Janne Pauline S, N. and Michael Angelo B, P., 2018. Development of abaca fiber-reinforced foamed fly ash geopolymer. In MATEC Web of Conferences (Vol. 156, p. 05018). EDP Sciences. DOI: https://doi.org/10.1051/matecconf/201815605018

Sathishkumar, G.K., Rajkumar, G., Srinivasan, K. and Umapathy, M.J., 2018. Structural analysis and mechanical properties of lignite fly-ash-added jute–epoxy polymer matrix composite. Journal of Reinforced Plastics and Composites, 37(2), pp.90-104. DOI: https://doi.org/10.1177/0731684417735183

Dilfi KF, A., Balan, A., Bin, H., Xian, G. and Thomas, S., 2018. Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber‐reinforced epoxy composites. Polymer Composites, 39(S4), pp.E2519-E2528.

Maurya, A.K., Gogoi, R. and Manik, G., 2021. Mechano-chemically activated fly-ash and sisal fiber reinforced PP hybrid composite with enhanced mechanical properties. Cellulose, 28, pp.8493-8508. DOI: https://doi.org/10.1007/s10570-021-03995-4

Aslam, F., Zaid, O., Althoey, F., Alyami, S.H., Qaidi, S.M., de Prado Gil, J. and Martínez‐García, R., 2023. Evaluating the influence of fly ash and waste glass on the characteristics of coconut fibers reinforced concrete. Structural Concrete, 24(2), pp.2440-2459. DOI: https://doi.org/10.1002/suco.202200183

Gupta, A., 2022. Influence of filler content on tribological behavior of cenopshere flyash filled bamboo fiber reinforced composites. Journal of Natural Fibers, 19(15), pp.12051-12067. DOI: https://doi.org/10.1080/15440478.2022.2051666

Kannan, G., Thangaraju, R., Kayaroganam, P. and Davim, J.P., 2022. The combined effect of banana fiber and fly ash reinforcements on the mechanical behavior of polyester composites. Journal of Natural Fibers, 19(15), pp.11384-11403. DOI: https://doi.org/10.1080/15440478.2022.2025977

Amalia, N. and Hidayatullah, S., 2017, March. The mechanical properties and microstructure characters of hybrid composite geopolymers-pineapple fiber leaves (PFL). In IOP Conference Series: Materials Science and Engineering (Vol. 180, No. 1, p. 012012). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/180/1/012012

Venkatachalam, G., Hemanth, V., Logesh, M., Piyush, A., Siva kumar, M., Pragasam, V. and Loganathan, T.G., 2023. Investigation of tensile behavior of carbon nanotube/coir fiber/fly ash reinforced epoxy polymer matrix composite. Journal of Natural Fibers, 20(1), p.2148151. DOI: https://doi.org/10.1080/15440478.2022.2148151

Detphan, S. and Chindaprasirt, P., 2009. Preparation of fly ash and rice husk ash geopolymer. International Journal of Minerals, Metallurgy and Materials, 16(6), pp.720-726.

Ren, X. and Sancaktar, E., 2019. Use of fly ash as eco-friendly filler in synthetic rubber for tire applications. Journal of cleaner production, 206, pp.374-382. DOI: https://doi.org/10.1016/j.jclepro.2018.09.202

Sinha, A.K., Narang, H.K. and Bhattacharya, S., 2017. Mechanical properties of natural fiber polymer composites. Journal of Polymer Engineering, 37(9), pp.879-895. DOI: https://doi.org/10.1515/polyeng-2016-0362

Dilfi KF, A., Balan, A., Bin, H., Xian, G. and Thomas, S., 2018. Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber‐reinforced epoxy composites. Polymer Composites, 39(S4), pp.E2519-E2528. DOI: https://doi.org/10.1002/pc.24817

Rabbi, M.S., Islam, T. and Islam, G.S., 2021. Injection-molded natural fiber-reinforced polymer composites–a review. International Journal of Mechanical and Materials Engineering, 16, pp.1-21. DOI: https://doi.org/10.1186/s40712-021-00139-1

Malenab, R.A.J., Ngo, J.P.S. and Promentilla, M.A.B., 2017. Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials, 10(6), p.579. DOI: https://doi.org/10.3390/ma10060579

Hasan, A., Rabbi, M. S., & Billah, M. M. (2022). Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Cleaner Materials, 4, 100078.

Hasan, A., Rabbi, M.S. and Billah, M.M., 2022. Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Cleaner Materials, 4, p.100078. DOI: https://doi.org/10.1016/j.clema.2022.100078

Praveen Kumar, A., Nalla Mohamed, M., Kurien Philips, K. and Ashwin, J., 2016. Development of novel natural composites with fly ash reinforcements and investigation of their tensile properties. Applied Mechanics and Materials, 852, pp.55-60.

Tan, T., BK Huat, B., Anggraini, V. and Shukla, S.K., 2021. Improving the engineering behaviour of residual soil with fly ash and treated natural fibers in alkaline condition. International Journal of Geotechnical Engineering, 15(3), pp.313-326. DOI: https://doi.org/10.1080/19386362.2018.1564854

Libre Jr, R.G.D., Leaño Jr, J.L., Lopez, L.F., Cacanando, C.J.D., Promentilla, M.A.B. and Ongpeng, J.M.C., 2023. Microstructure and mechanical performance of bamboo fiber reinforced mill-scale—Fly-ash based geopolymer mortars. Cleaner Chemical Engineering, 6, p.100110. DOI: https://doi.org/10.1016/j.clce.2023.100110

Poletanovic, B., Janotka, I., Janek, M., Bacuvcik, M. and Merta, I., 2021. Influence of the NaOH-treated hemp fibers on the properties of fly-ash based alkali-activated mortars prior and after wet/dry cycles. Construction and Building Materials, 309, p.125072. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125072

Ramesh, A., Ramu, K., Baig, M.A.A. and Guptha, E.D., 2020. Influence of fly ash nano filler on the tensile and flexural properties of novel hybrid epoxy nano-composites. Materials Today: Proceedings, 27, pp.1252-1257. DOI: https://doi.org/10.1016/j.matpr.2020.02.150

Ashok, K., Ajith, D., Bibin, C., Sheeja, R. and Nishanth, R., 2022. Influence of nanofiller lignite fly ash on tribo-mechanical performance of Sansevieria roxburghiana fiber reinforced epoxy composites. Journal of Natural Fibers, 19(13), pp.6000-6014. DOI: https://doi.org/10.1080/15440478.2021.1902904

Mishra, A. and Padhee, D., 2017. Evaluation of mechanical properties of rice husk-fly ash-epoxy hybrid composites. IOSR J. Mech. Civ. Eng, 14(03), pp.91-99. DOI: https://doi.org/10.9790/1684-1403069199

Raghavendra, G., Ojha, S., Acharya, S.K. and Pal, S.K., 2016. A comparative analysis of woven jute/glass hybrid polymer composite with and without reinforcing of fly ash particles. Polymer Composites, 37(3), pp.658-665. DOI: https://doi.org/10.1002/pc.23222

Praveen Kumar, A., Nalla Mohamed, M., Kurien Philips, K. and Ashwin, J., 2016. Development of novel natural composites with fly ash reinforcements and investigation of their tensile properties. Applied Mechanics and Materials, 852, pp.55-60. DOI: https://doi.org/10.4028/www.scientific.net/AMM.852.55

Sumesh, K.R., Kavimani, V., Rajeshkumar, G., Indran, S. and Saikrishnan, G., 2021. Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. Journal of Material Cycles and Waste Management, 23(4), pp.1277-1288. DOI: https://doi.org/10.1007/s10163-021-01196-6

Korniejenko, K., Sağlamtimur, N.D., Furtos, G. and Mikuła, J., 2020. The overview of mechanical properties of short natural fiber reinforced geopolymer composites. Environmental Research and Technology, 3(1), pp.28-39. DOI: https://doi.org/10.35208/ert.671713

Veerasimman, A., Shanmugam, V., Rajendran, S., Johnson, D.J., Subbiah, A., Koilpichai, J. and Marimuthu, U., 2022. Thermal properties of natural fiber sisal based hybrid composites–a brief review. Journal of Natural Fibers, 19(12), pp.4696-4706. DOI: https://doi.org/10.1080/15440478.2020.1870619

Pappu, A. and Thakur, V.K., 2017. Towards sustainable micro and nano composites from fly ash and natural fibers for multifunctional applications. Vacuum, 146, pp.375-385. DOI: https://doi.org/10.1016/j.vacuum.2017.05.026

Kafodya, I. and Okonta, F., 2018. Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil. Construction and Building Materials, 170, pp.737-746. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.194

Wongsa, A., Kunthawatwong, R., Naenudon, S., Sata, V. and Chindaprasirt, P., 2020. Natural fiber reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 241(4), p.118143.

Li, H.D., Zhang, Q.M., Feng, G., Mei, L., Wang, Y. and Long, W.J., 2020. Multi-scale improved damping of high-volume fly ash cementitious composite: combined effects of polyvinyl alcohol fiber and graphene oxide. Construction and Building Materials, 260(2), p.119901. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119901

Al-Mashhadani, M.M., Canpolat, O., Aygörmez, Y., Uysal, M. and Erdem, S., 2018. Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Construction and building materials, 167, pp.505-513. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.061

Zhang, P., Han, X., Hu, S., Wang, J. and Wang, T., 2022. High-temperature behavior of polyvinyl alcohol fiber-reinforced metakaolin/fly ash-based geopolymer mortar. Composites Part B: Engineering, 244(1), p.110171. DOI: https://doi.org/10.1016/j.compositesb.2022.110171

Niu, M., Zhang, J., Li, G., Song, Z. and Wang, X., 2021. Mechanical properties of polyvinyl alcohol fiber-reinforced sulfoaluminate cement mortar containing high-volume of fly ash. Journal of Building Engineering, 35(4), p.101988. DOI: https://doi.org/10.1016/j.jobe.2020.101988

Wongsa, A., Kunthawatwong, R., Naenudon, S., Sata, V. and Chindaprasirt, P., 2020. Natural fiber reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 241(4), p.118143. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118143

Mamatha, B.S., Sujatha, D., Uday, D.N. and Kiran, M.C., 2023. Properties of flyash based wood geopolymer composite. Low-carbon Materials and Green Construction, 1(1), p.29. DOI: https://doi.org/10.1007/s44242-023-00030-6

Mohammed Razzaq, A., Majid, D.L., Ishak, M.R. and Basheer, U.M., 2017. Effect of fly ash addition on the physical and mechanical properties of AA6063 alloy reinforcement. Metals, 7(11), p.477. DOI: https://doi.org/10.3390/met7110477

Yerramala, A. and Desai, B.H.A.S.K.A.R., 2012. Influence of fly ash replacement on strength properties of cement mortar. International Journal of Engineering Science and Technology, 4(8), pp.3657-3665.

Manimaran, R., Jayakumar, I., Mohammad Giyahudeen, R. and Narayanan, L., 2018. Mechanical properties of fly ash composites—A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(8), pp.887-893. DOI: https://doi.org/10.1080/15567036.2018.1463319

Alomayri, T., Raza, A. and Shaikh, F., 2021. Effect of nano SiO2 on mechanical properties of micro-steel fibers reinforced geopolymer composites. Ceramics International, 47(23), pp.33444-33453. DOI: https://doi.org/10.1016/j.ceramint.2021.08.251

Ng, D.S., Paul, S.C., Anggraini, V., Kong, S.Y., Qureshi, T.S., Rodriguez, C.R., Liu, Q.F. and Šavija, B., 2020. Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Construction and Building Materials, 258, p.119627. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119627

Rong, Z., Zhao, M. and Wang, Y., 2020. Effects of modified nano-SiO2 particles on properties of high-performance cement-based composites. Materials, 13(3), p.646. DOI: https://doi.org/10.3390/ma13030646

Kesarla, H., Rohit, K., Mohod, A., Tanji, S., Mane, O. and Venkatachalam, G., 2018. Study on Tensile behavior of fly ash reinforced hybrid polymer matrix composite. materials today: proceedings, 5(5), pp.11922-11932. DOI: https://doi.org/10.1016/j.matpr.2018.02.166

Nidhia, V., Singha, D. and Devnani, G.L., 2020. Fly ash mediated epoxy composites: A Review. J. Indian Chem. Soc, 97, pp.1038-1042.

Li, J., Dang, X., Zhang, J., Yi, P. and Li, Y., 2023. Mechanical properties of fly ash-slag based geopolymer for repair of road subgrade diseases. Polymers, 15(2), p.309. DOI: https://doi.org/10.3390/polym15020309

Cosnita, M., Balas, M. and Cazan, C., 2022. The influence of fly ash on the mechanical properties of water immersed all waste composites. Polymers, 14(10), p.1957. DOI: https://doi.org/10.3390/polym14101957

Zhang, P., Zhao, Y.N., Li, Q.F., Zhang, T.H. and Wang, P., 2014. Mechanical properties of fly ash concrete composite reinforced with nano-SiO2 and steel fiber. Current science, 106(11), pp.1529-1537.

Tseng, H.C., 2024. The effect of fiber content and aspect ratio on anisotropic flow front and fiber orientation for injection-molded fiber composites. International Polymer Processing, 39(1), pp.47-58. DOI: https://doi.org/10.1515/ipp-2023-4386

Downloads

Published

02-11-2024

How to Cite

Rahman, M. T., Rabbi, M. S., & Siddiqui, M. A. S. (2024). From Waste to Strength: A Comprehensive Review on Using Fly Ash in Composites with Enhanced Mechanical Properties. Journal of Engineering Advancements, 5(04), 94–106. https://doi.org/10.38032/jea.2024.04.001
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Review Articles

Most read articles by the same author(s)

فروشگاه اینترنتی صندلی اداری