From Waste to Strength: A Comprehensive Review on Using Fly Ash in Composites with Enhanced Mechanical Properties
DOI:
https://doi.org/10.38032/jea.2024.04.001Keywords:
Fly Ash, Composites, Mechanical PropertiesAbstract
This article explores the diverse applications of fly ash (FA), a by-product generated during the combustion of coal. The introductory segment thoroughly comprehends the origins, composition, and widespread occurrence of FA. FA, which comprises an estimated 38% of worldwide power generation, frequently encounters disposal and storage obstacles on account of its classification as non-hazardous waste in the majority of countries. The environmental issues linked to the dispersal of FA are underscored in the problem statement, which further emphasizes the urgency for sustainable alternatives. Due to the fugitive emissions and potential health hazards associated with metal melting in FA, it is critical to investigate novel applications and disposal techniques immediately. Environmental sustainability is a primary focus of research, with the development of synthetic FA composites being one such alternative. The analysis presents significant findings that underscore the wide-ranging applications of FA. These applications include its utilization as a filler in composites, as well as its incorporation into cement and geo-polymerization processes. Notably, (10-20) wt. % Nano-FA enhances epoxy-based composites, showcasing remarkable improvements in tensile strength, flexural strength, and impact resistance. In thermoplastic composites, substantial enhancements occur within the (5–10) wt. % FA range, but exceeding optimal ranges weakens matrix-fiber interaction, leading to diminishing returns. The article emphasizes the criticality of FA in improving the mechanical and thermodynamic characteristics of substances, specifically within the domain of composites. The investigation into FA nanoparticles, including their processing techniques and surface treatments, unveils encouraging prospects for enhancing material characteristics.
References
Yousuf, A., Manzoor, S.O., Youssouf, M., Malik, Z.A. and Khawaja, K.S., 2020. Fly ash: production and utilization in India-an overview. J Mater Environ Sci, 11(6), pp.911-921.
Rabbi, M. S., Rahman, T., Roshid, M. M., & Siddiqui, M. S. (2024). Influence of chemical treatment of fly ash on mechanical, thermal, and water absorption characteristics of PS/SBC nanocomposite. SPE Polymers, 5(4), pp.663-679.
Lanzerstorfer, C., 2018. Pre-processing of coal combustion fly ash by classification for enrichment of rare earth elements. Energy Reports, 4, pp.660-663.
Zierold, K.M. and Odoh, C., 2020. A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. Reviews on environmental health, 35(4), pp.401-418.
Praharaj, M.K., A Comparison Study between C and F Fly Ash Aggregates.
“Coal Fly Ash - User Guideline - Portland Cement Concrete - User Guidelines for Waste and Byproduct Materials in Pavement Construction - FHWA-RD-97-148.” Accessed: Dec. 09, 2023. [Online]. Available: https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/cfa53.cfm
Standard, A.S.T.M., 2003. C595. Standard specification for blended hydraulic cements.
Pappu, A. and Thakur, V.K., 2017. Towards sustainable micro and nano composites from fly ash and natural fibers for multifunctional applications. Vacuum, 146, pp.375-385.
Garbacz, A. and Sokołowska, J.J., 2013. Concrete-like polymer composites with fly ashes–Comparative study. Construction and building materials, 38, pp.689-699.
Suraneni, P., Burris, L., Shearer, C.R. and Hooton, R.D., 2021. ASTM C618 fly ash specification: Comparison with other specifications, shortcomings, and solutions. ACI Mater. J, 118(1), p.157167.
Singh, N.B., 2022. 19-Fly ash in the construction industry. Handbook of Fly Ash; Kamal, KK, Ed.; Butterworth-Heinemann: Oxford, UK, pp.565-610.
McCarthy, M.J. and Dyer, T.D., 2019. Pozzolanas and pozzolanic materials. Lea’s Chemistry of Cement and Concrete, 5, pp.363-467.
Sargent, P., 2015. The development of alkali-activated mixtures for soil stabilisation. In Handbook of alkali-activated cements, mortars and concretes (pp. 555-604). Woodhead Publishing.
Seed, H.B., Woodward, R.J. and Lundgren, R., 1964. Fundamental aspects of the Atterberg limits. Journal of the Soil Mechanics and Foundations Division, 90(6), pp.75-106.
Shirkhanloo, S., Najafi, M., Kaushal, V. and Rajabi, M., 2021. A comparative study on the effect of class C and class F fly ashes on geotechnical properties of high-plasticity clay. CivilEng, 2(4), pp.1009-1018.
Ghavami, S., Jahanbakhsh, H. and Moghaddasnezhad, F., 2020. Laboratory study on stabilization of kaolinite clay with cement and cement kiln dust. Amirkabir Journal of Civil Engineering, 52(4), pp.935-948.
Kaushal, V. and Guleria, S.P., 2016, March. Study of Tensile Strength and Mineralogical Behavior of Flyash–Lime-Gypsum Composite Reinforced with Jute Fibers. In National Conference on Innovations without limits in Civil Engineering (IWLCE 2016).
Ghavami, S. and Rajabi, M., 2021. Investigating the influence of the combination of cement kiln dust and fly ash on compaction and strength characteristics of high-plasticity clays. Journal of Civil Engineering and Materials Application, 5(1), pp.9-16.
Ahmad, S., 2014. Preparation of eco-friendly natural hair fiber reinforced polymeric composite (FRPC) material by using of polypropylene and fly ash: a review. International Journal of Scientific & Engineering Research, 5(11), pp.969-972.
Tiwari, S., Srivastava, K., Gehlot, C.L. and Srivastava, D., 2020. Epoxy/fly ash from thermal power plant/nanofiller nanocomposite: studies on mechanical and thermal properties: a review. Int. J. Waste Resour, 10, pp.1-16.
Rajak, D.K., Raj, A., Guria, C. and Pathak, A.K., 2017. Grinding of Class-F fly ash using planetary ball mill: A simulation study to determine the breakage kinetics by direct-and back-calculation method. south african journal of chemical engineering, 24(1), pp.135-147.
Chu, Y.S., Davaabal, B., Kim, D.S., Seo, S.K., Kim, Y., Ruescher, C. and Temuujin, J., 2019. Reactivity of fly ashes milled in different milling devices. Reviews on Advanced Materials Science, 58(1), pp.179-188.
Giergiczny, Z., 2019. Fly ash and slag. Cement and concrete research, 124, p.105826.
Chu, Y.S., Davaabal, B., Kim, D.S., Seo, S.K., Kim, Y., Ruescher, C. and Temuujin, J., 2019. Reactivity of fly ashes milled in different milling devices. Reviews on Advanced Materials Science, 58(1), pp.179-188.
Rajak, D.K., Raj, A., Guria, C. and Pathak, A.K., 2017. Grinding of Class-F fly ash using planetary ball mill: A simulation study to determine the breakage kinetics by direct-and back-calculation method. south african journal of chemical engineering, 24(1), pp.135-147.
Sumesh, K.R., Kavimani, V., Rajeshkumar, G., Indran, S. and Saikrishnan, G., 2021. Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. Journal of Material Cycles and Waste Management, 23(4), pp.1277-1288.
Tiwari, S., Srivastava, K., Gehlot, C.L. and Srivastava, D., 2020. Studies on mechanical and thermal properties of epoxy/fly ash/nanofiller nanocomposite: a review. International Journal of Civil Engineering and Technology, 11(2), pp.120-139.
Sah, S.K., Nirala, B., Kumar, A. and Anand, A., Study on the Characterization and Classification of Fly Ash Samples Obtained Locally.
Tantermsirikul, S., Saengsoy, W., Kaewmanee, K., Julnipitawong, P. and Samranwanich, T., 2023, June. Toward effective utilization of fly ash and multi-binder system with fly ash in concrete. In Journal of Physics: Conference Series (Vol. 2521, No. 1, p. 012002). IOP Publishing.
Tantermsirikul, S., Saengsoy, W., Kaewmanee, K., Julnipitawong, P. and Samranwanich, T., 2023, June. Toward effective utilization of fly ash and multi-binder system with fly ash in concrete. In Journal of Physics: Conference Series (Vol. 2521, No. 1, p. 012002). IOP Publishing.
Libre Jr, R.G.D., Leaño Jr, J.L., Lopez, L.F., Cacanando, C.J.D., Promentilla, M.A.B. and Ongpeng, J.M.C., 2023. Microstructure and mechanical performance of bamboo fiber reinforced mill-scale—Fly-ash based geopolymer mortars. Cleaner Chemical Engineering, 6, p.100110.
Lazorenko, G., Kasprzhitskii, A., Yavna, V., Mischinenko, V., Kukharskii, A., Kruglikov, A., Kolodina, A. and Yalovega, G., 2020. Effect of pre-treatment of flax tows on mechanical properties and microstructure of natural fiber reinforced geopolymer composites. Environmental Technology & Innovation, 20, p.101105.
Zulfiati, R. and Idris, Y., 2019, April. Mechanical properties of fly ash-based geopolymer with natural fiber. In Journal of Physics: Conference Series (Vol. 1198, No. 8, p. 082021). IOP Publishing.
Sugiman, S. and Setyawan, P.D., 2014. Surface treatment of fly ash for improving the tensile strength of fly ash/unsaturated polyester composites. Makara Journal of Technology, 17(3), p.5.
Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., Yu, W.H. and Wang, H., 2016. Fly ash-based geopolymer: clean production, properties and applications. Journal of cleaner production, 125, pp.253-267.
“What is a Composite Material? (A Definitive Guide) - TWI.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.twi-global.com/technical-knowledge/faqs/what-is-a-composite-material
Mulinari, D.R., Saron, C., Carvalho, K.C. and Voorwald, H.J., 2011. Thermoplastic and thermosetting composites with natural fibers.
Berzin, F. and Vergnes, B., 2021. Thermoplastic natural fiber based composites. In Fiber Reinforced Composites (pp. 113-139). Woodhead Publishing.
Mahendran, A.R., Wuzella, G., Lammer, H. and Gindl-Altmutter, W., 2021. Thermosetting natural fiber based composites. In Fiber Reinforced Composites (pp. 187-214). Woodhead Publishing.
Salah, N., Alfawzan, A.M., Saeed, A., Alshahrie, A. and Allafi, W., 2019. Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Scientific Reports, 9(1), p.20288.
Ez‐Zahraoui, S., Kassab, Z., Ablouh, E.H., Sehaqui, H., Bouhfid, R., Alami, J., El Achaby, M. and Qaiss, A.E.K., 2021. Effect of fly ash and coupling agent on the structural, morphological, thermal, and mechanical properties of polyamide 6/acrylonitrile‐butadiene‐styrene blend. Polymer Composites, 42(7), pp.3518-3538.
Chowdhury, S., Roy, S. and Singh, S.P., 2023. Performance assessment of three alkali-treated fly ashes as a pavement base-course material. Construction and Building Materials, 365, p.130110.
Khoshnoud, P. and Abu‐Zahra, N., 2019. The effect of particle size of fly ash (FA) on the interfacial interaction and performance of PVC/FA composites. Journal of Vinyl and Additive Technology, 25(2), pp.134-143.
Xue, C., Nan, H., Lu, Y., Chen, H., Zhao, C. and Xu, S., 2021. Effects of inorganic‐organic surface modification on the mechanical and thermal properties of poly (vinyl chloride) composites reinforced with fly‐ash. Polymer Composites, 42(4), pp.1867-1877.
Satapathy, S. and Bihari Nando, G., 2016. Mechanical, dynamic mechanical, and thermal characterization of fly ash and nanostructured fly ash‐waste polyethylene/high‐density polyethylene blend composites. Polymer composites, 37(11), pp.3256-3268.
Raju, G.M., Madhu, G.M., Khan, M.A. and Reddy, P.D.S., 2018. Characterizing and modeling of mechanical properties of epoxy polymer composites reinforced with fly ash. Materials Today: Proceedings, 5(14), pp.27998-28007.
Hanumantharaya, R., Kumar, B.P. and Ajith, B.S., 2021. Mechanical and wear behaviour of flyash reinforced epoxy composites. Journal of Mines, Metals and Fuels, pp.78-83.
Mohammed Altaweel, A.M., Ranganathaiah, C., Kothandaraman, B., Raj, J.M. and Chandrashekara, M.N., 2011. Characterization of ACS modified epoxy resin composites with fly ash and cenospheres as fillers: mechanical and microstructural properties. polymer composites, 32(1), pp.139-146.
Nagendiran, S., Badghaish, A., Hussein, I.A., Shuaib, A.N., Furquan, S.A. and Al‐Mehthel, M.H., 2016. Epoxy/oil fly ash composites prepared through in situ polymerization: enhancement of thermal and mechanical properties. Polymer Composites, 37(2), pp.512-522.
Tiwari, S., Gehlot, C.L. and Srivastava, D., 2021. Synergistic influence of CaCO3 nanoparticle on the mechanical and thermal of fly ash reinforced epoxy polymer composites. Materials Today: Proceedings, 43, pp.3375-3385.
Sim, J., Kang, Y., Kim, B.J., Park, Y.H. and Lee, Y.C., 2020. Preparation of fly ash/epoxy composites and its effects on mechanical properties. Polymers, 12(1), p.79.
Tiwari, S., Gehlot, C.L. and Srivastava, D., 2020. Epoxy/Fly ash from Indian soil Chulha/nano CaCO3 nanocomposite: Studies on mechanical and thermal properties. Polymer Composites, 41(8), pp.3237-3249.
Ozsoy, I., Demirkol, A., Mimaroglu, A., Unal, H. and Demir, Z., 2015. The influence of micro-and nano-filler content on the mechanical properties of epoxy composites. Strojniski Vestnik/Journal of Mechanical Engineering, 61(10).
Yin, J., Bian, B., Ge, Y. and Ma, Q., 2018. Effect of fly ash on the overall performance of particulate‐filled polymer composite for precision machine tools. Polymer Composites, 39(11), pp.3986-3993.
Nilagiri Balasubramanian, K.B. and Ramesh, T., 2018. Role, effect, and influences of micro and nano‐fillers on various properties of polymer matrix composites for microelectronics: a review. Polymers for Advanced Technologies, 29(6), pp.1568-1585.
Gupta, D., Chaudhary, A.K., Singh, V.K., Verma, D., Goh, K.L. and Sharma, M., 2023. Thermo-mechanical analysis of bhimal fiber (Grewia optiva)-CaCO3/flyash/TiO2 reinforced epoxy bio-composites. Industrial Crops and Products, 204, p.117341.
Mohd Nasir, N.H., Usman, F., Woen, E.L., Ansari, M.N.M. and Supian, A.B.M., 2023. Microstructural and Thermal Behaviour of Composite Material from Recycled Polyethylene Terephthalate and Fly Ash. Recycling, 8(1), p.11.
Shimpi, N.G., Verma, J. and Mishra, S., 2010. Dispersion of nano CaCO3 on PVC and its influence on mechanical and thermal properties. Journal of composite materials, 44(2), pp.211-219.
Chindaprasirt, P., Jitsangiam, P. and Rattanasak, U., 2022. Hydrophobicity and efflorescence of lightweight fly ash geopolymer incorporated with calcium stearate. Journal of Cleaner Production, 364, p.132449.
Tiwari, S., Gehlot, C.L. and Srivastava, D., 2021. Synergistic influence of CaCO3 nanoparticle on the mechanical and thermal of fly ash reinforced epoxy polymer composites. Materials Today: Proceedings, 43, pp.3375-3385.
Cosnita, M., Balas, M. and Cazan, C., 2022. The influence of fly ash on the mechanical properties of water immersed all waste composites. Polymers, 14(10), p.1957.
Ashok, K., Ajith, D., Bibin, C., Sheeja, R. and Nishanth, R., 2022. Influence of nanofiller lignite fly ash on tribo-mechanical performance of Sansevieria roxburghiana fiber reinforced epoxy composites. Journal of Natural Fibers, 19(13), pp.6000-6014.
Maurya, S.D., Singh, M.K., Amanulla, S., Yadav, S.N. and Nayak, S.K., 2022. Mechanical, electrical and thermal properties of nylon-66/flyash composites: Effect of flyash. Organic Polymer Material Research, 4(2).
Ge, J.C., Yoon, S.K. and Choi, N.J., 2018. Application of fly ash as an adsorbent for removal of air and water pollutants. Applied Sciences, 8(7), p.1116.
Kesarla, H., Rohit, K., Mohod, A., Tanji, S., Mane, O. and Venkatachalam, G., 2018. Study on Tensile behavior of fly ash reinforced hybrid polymer matrix composite. materials today: proceedings, 5(5), pp.11922-11932.
Sukmak, P., Horpibulsuk, S. and Shen, S.L., 2013. Strength development in clay–fly ash geopolymer. Construction and building Materials, 40, pp.566-574.
Janne Pauline S, N. and Michael Angelo B, P., 2018. Development of abaca fiber-reinforced foamed fly ash geopolymer. In MATEC Web of Conferences (Vol. 156, p. 05018). EDP Sciences.
Sathishkumar, G.K., Rajkumar, G., Srinivasan, K. and Umapathy, M.J., 2018. Structural analysis and mechanical properties of lignite fly-ash-added jute–epoxy polymer matrix composite. Journal of Reinforced Plastics and Composites, 37(2), pp.90-104.
Dilfi KF, A., Balan, A., Bin, H., Xian, G. and Thomas, S., 2018. Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber‐reinforced epoxy composites. Polymer Composites, 39(S4), pp.E2519-E2528.
Maurya, A.K., Gogoi, R. and Manik, G., 2021. Mechano-chemically activated fly-ash and sisal fiber reinforced PP hybrid composite with enhanced mechanical properties. Cellulose, 28, pp.8493-8508.
Aslam, F., Zaid, O., Althoey, F., Alyami, S.H., Qaidi, S.M., de Prado Gil, J. and Martínez‐García, R., 2023. Evaluating the influence of fly ash and waste glass on the characteristics of coconut fibers reinforced concrete. Structural Concrete, 24(2), pp.2440-2459.
Gupta, A., 2022. Influence of filler content on tribological behavior of cenopshere flyash filled bamboo fiber reinforced composites. Journal of Natural Fibers, 19(15), pp.12051-12067.
Kannan, G., Thangaraju, R., Kayaroganam, P. and Davim, J.P., 2022. The combined effect of banana fiber and fly ash reinforcements on the mechanical behavior of polyester composites. Journal of Natural Fibers, 19(15), pp.11384-11403.
Amalia, N. and Hidayatullah, S., 2017, March. The mechanical properties and microstructure characters of hybrid composite geopolymers-pineapple fiber leaves (PFL). In IOP Conference Series: Materials Science and Engineering (Vol. 180, No. 1, p. 012012). IOP Publishing.
Venkatachalam, G., Hemanth, V., Logesh, M., Piyush, A., Siva kumar, M., Pragasam, V. and Loganathan, T.G., 2023. Investigation of tensile behavior of carbon nanotube/coir fiber/fly ash reinforced epoxy polymer matrix composite. Journal of Natural Fibers, 20(1), p.2148151.
Detphan, S. and Chindaprasirt, P., 2009. Preparation of fly ash and rice husk ash geopolymer. International Journal of Minerals, Metallurgy and Materials, 16(6), pp.720-726.
Ren, X. and Sancaktar, E., 2019. Use of fly ash as eco-friendly filler in synthetic rubber for tire applications. Journal of cleaner production, 206, pp.374-382.
Sinha, A.K., Narang, H.K. and Bhattacharya, S., 2017. Mechanical properties of natural fiber polymer composites. Journal of Polymer Engineering, 37(9), pp.879-895.
Dilfi KF, A., Balan, A., Bin, H., Xian, G. and Thomas, S., 2018. Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber‐reinforced epoxy composites. Polymer Composites, 39(S4), pp.E2519-E2528.
Rabbi, M.S., Islam, T. and Islam, G.S., 2021. Injection-molded natural fiber-reinforced polymer composites–a review. International Journal of Mechanical and Materials Engineering, 16, pp.1-21.
Malenab, R.A.J., Ngo, J.P.S. and Promentilla, M.A.B., 2017. Chemical treatment of waste abaca for natural fiber-reinforced geopolymer composite. Materials, 10(6), p.579.
Hasan, A., Rabbi, M. S., & Billah, M. M. (2022). Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Cleaner Materials, 4, 100078.
Hasan, A., Rabbi, M.S. and Billah, M.M., 2022. Making the lignocellulosic fibers chemically compatible for composite: A comprehensive review. Cleaner Materials, 4, p.100078.
Praveen Kumar, A., Nalla Mohamed, M., Kurien Philips, K. and Ashwin, J., 2016. Development of novel natural composites with fly ash reinforcements and investigation of their tensile properties. Applied Mechanics and Materials, 852, pp.55-60.
Tan, T., BK Huat, B., Anggraini, V. and Shukla, S.K., 2021. Improving the engineering behaviour of residual soil with fly ash and treated natural fibers in alkaline condition. International Journal of Geotechnical Engineering, 15(3), pp.313-326.
Libre Jr, R.G.D., Leaño Jr, J.L., Lopez, L.F., Cacanando, C.J.D., Promentilla, M.A.B. and Ongpeng, J.M.C., 2023. Microstructure and mechanical performance of bamboo fiber reinforced mill-scale—Fly-ash based geopolymer mortars. Cleaner Chemical Engineering, 6, p.100110.
Poletanovic, B., Janotka, I., Janek, M., Bacuvcik, M. and Merta, I., 2021. Influence of the NaOH-treated hemp fibers on the properties of fly-ash based alkali-activated mortars prior and after wet/dry cycles. Construction and Building Materials, 309, p.125072.
Ramesh, A., Ramu, K., Baig, M.A.A. and Guptha, E.D., 2020. Influence of fly ash nano filler on the tensile and flexural properties of novel hybrid epoxy nano-composites. Materials Today: Proceedings, 27, pp.1252-1257.
Ashok, K., Ajith, D., Bibin, C., Sheeja, R. and Nishanth, R., 2022. Influence of nanofiller lignite fly ash on tribo-mechanical performance of Sansevieria roxburghiana fiber reinforced epoxy composites. Journal of Natural Fibers, 19(13), pp.6000-6014.
Mishra, A. and Padhee, D., 2017. Evaluation of mechanical properties of rice husk-fly ash-epoxy hybrid composites. IOSR J. Mech. Civ. Eng, 14(03), pp.91-99.
Raghavendra, G., Ojha, S., Acharya, S.K. and Pal, S.K., 2016. A comparative analysis of woven jute/glass hybrid polymer composite with and without reinforcing of fly ash particles. Polymer Composites, 37(3), pp.658-665.
Praveen Kumar, A., Nalla Mohamed, M., Kurien Philips, K. and Ashwin, J., 2016. Development of novel natural composites with fly ash reinforcements and investigation of their tensile properties. Applied Mechanics and Materials, 852, pp.55-60.
Sumesh, K.R., Kavimani, V., Rajeshkumar, G., Indran, S. and Saikrishnan, G., 2021. Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. Journal of Material Cycles and Waste Management, 23(4), pp.1277-1288.
Korniejenko, K., Sağlamtimur, N.D., Furtos, G. and Mikuła, J., 2020. The overview of mechanical properties of short natural fiber reinforced geopolymer composites. Environmental Research and Technology, 3(1), pp.28-39.
Veerasimman, A., Shanmugam, V., Rajendran, S., Johnson, D.J., Subbiah, A., Koilpichai, J. and Marimuthu, U., 2022. Thermal properties of natural fiber sisal based hybrid composites–a brief review. Journal of Natural Fibers, 19(12), pp.4696-4706.
Pappu, A. and Thakur, V.K., 2017. Towards sustainable micro and nano composites from fly ash and natural fibers for multifunctional applications. Vacuum, 146, pp.375-385.
Kafodya, I. and Okonta, F., 2018. Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil. Construction and Building Materials, 170, pp.737-746.
Wongsa, A., Kunthawatwong, R., Naenudon, S., Sata, V. and Chindaprasirt, P., 2020. Natural fiber reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 241(4), p.118143.
Li, H.D., Zhang, Q.M., Feng, G., Mei, L., Wang, Y. and Long, W.J., 2020. Multi-scale improved damping of high-volume fly ash cementitious composite: combined effects of polyvinyl alcohol fiber and graphene oxide. Construction and Building Materials, 260(2), p.119901.
Al-Mashhadani, M.M., Canpolat, O., Aygörmez, Y., Uysal, M. and Erdem, S., 2018. Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Construction and building materials, 167, pp.505-513.
Zhang, P., Han, X., Hu, S., Wang, J. and Wang, T., 2022. High-temperature behavior of polyvinyl alcohol fiber-reinforced metakaolin/fly ash-based geopolymer mortar. Composites Part B: Engineering, 244(1), p.110171.
Niu, M., Zhang, J., Li, G., Song, Z. and Wang, X., 2021. Mechanical properties of polyvinyl alcohol fiber-reinforced sulfoaluminate cement mortar containing high-volume of fly ash. Journal of Building Engineering, 35(4), p.101988.
Wongsa, A., Kunthawatwong, R., Naenudon, S., Sata, V. and Chindaprasirt, P., 2020. Natural fiber reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 241(4), p.118143.
Mamatha, B.S., Sujatha, D., Uday, D.N. and Kiran, M.C., 2023. Properties of flyash based wood geopolymer composite. Low-carbon Materials and Green Construction, 1(1), p.29.
Mohammed Razzaq, A., Majid, D.L., Ishak, M.R. and Basheer, U.M., 2017. Effect of fly ash addition on the physical and mechanical properties of AA6063 alloy reinforcement. Metals, 7(11), p.477.
Yerramala, A. and Desai, B.H.A.S.K.A.R., 2012. Influence of fly ash replacement on strength properties of cement mortar. International Journal of Engineering Science and Technology, 4(8), pp.3657-3665.
Manimaran, R., Jayakumar, I., Mohammad Giyahudeen, R. and Narayanan, L., 2018. Mechanical properties of fly ash composites—A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(8), pp.887-893.
Alomayri, T., Raza, A. and Shaikh, F., 2021. Effect of nano SiO2 on mechanical properties of micro-steel fibers reinforced geopolymer composites. Ceramics International, 47(23), pp.33444-33453.
Ng, D.S., Paul, S.C., Anggraini, V., Kong, S.Y., Qureshi, T.S., Rodriguez, C.R., Liu, Q.F. and Šavija, B., 2020. Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Construction and Building Materials, 258, p.119627.
Rong, Z., Zhao, M. and Wang, Y., 2020. Effects of modified nano-SiO2 particles on properties of high-performance cement-based composites. Materials, 13(3), p.646.
Kesarla, H., Rohit, K., Mohod, A., Tanji, S., Mane, O. and Venkatachalam, G., 2018. Study on Tensile behavior of fly ash reinforced hybrid polymer matrix composite. materials today: proceedings, 5(5), pp.11922-11932.
Nidhia, V., Singha, D. and Devnani, G.L., 2020. Fly ash mediated epoxy composites: A Review. J. Indian Chem. Soc, 97, pp.1038-1042.
Li, J., Dang, X., Zhang, J., Yi, P. and Li, Y., 2023. Mechanical properties of fly ash-slag based geopolymer for repair of road subgrade diseases. Polymers, 15(2), p.309.
Cosnita, M., Balas, M. and Cazan, C., 2022. The influence of fly ash on the mechanical properties of water immersed all waste composites. Polymers, 14(10), p.1957.
Zhang, P., Zhao, Y.N., Li, Q.F., Zhang, T.H. and Wang, P., 2014. Mechanical properties of fly ash concrete composite reinforced with nano-SiO2 and steel fiber. Current science, 106(11), pp.1529-1537.
Tseng, H.C., 2024. The effect of fiber content and aspect ratio on anisotropic flow front and fiber orientation for injection-molded fiber composites. International Polymer Processing, 39(1), pp.47-58.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Md. Tauhidur Rahman, Md Sanaul Rabbi, M. A. Shadab Siddiqui
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Most read articles by the same author(s)
- Md Sanaul Rabbi, Snigdha Das, Tasfia Tasneem, M Maruf Billah, Afnan Hasan, Effect of Nano-filler on the Manufacturing and Properties of Natural Fiber-based Composites: A Review , Journal of Engineering Advancements: Vol. 4 No. 04 (2023)