Effect of Nano-filler on the Manufacturing and Properties of Natural Fiber-based Composites: A Review

Authors

  • Md Sanaul Rabbi Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram 4349, Bangladesh
    • Snigdha Das Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram 4349, Bangladesh
      • Tasfia Tasneem Department of Mechanical Engineering, Bangladesh Army University Science & Technology, Saidpur 5311, Bangladesh
        • M Maruf Billah Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram 4349, Bangladesh
          • Afnan Hasan Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram 4349, Bangladesh

            DOI:

            https://doi.org/10.38032/jea.2023.04.001

            Keywords:

            Natural fiber-based composites, Nanofiller, Manufacturing, Properties

            Abstract

            Natural fiber reinforced polymer composite offers ecological safety towards a sustainable environment. Meanwhile, the deficiency of the poor interfacial bonding between fiber and matrix draws the attention of researchers to be sorted out. The use of inorganic nanofiller is considered as a possible solution to overcome the hurdle nowadays besides strengthening the composite properties. This article thoroughly reviews the use of inorganic nanofillers in natural fiber composites, covering different manufacturing processes and properties. Factors of various manufacturing techniques occupied for composite fabrication are investigated. Moreover, the influences of different nanofillers on mechanical, thermal, chemical, and physical properties of composites are discussed. In addition, Scanning Electron Microscopy (SEM) images of the bio composites are critically reviewed that usually exhibit the interfacial bonding and the fractures of the specimen. Furthermore, application of such natural fiber composites and the future investigation pathway in using inorganic nanofiller in composite are narrated.

             

            References

            Gowthaman, N. S. K., Lim, H. N., Sreeraj, T. R., Amalraj, A., & Gopi, S. (2021). Advantages of biopolymers over synthetic polymers: Social, economic, and environmental aspects. In Biopolymers and Their Industrial Applications (pp. 351-372). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-819240-5.00015-8

            Mahir, F. I., Keya, K. N., Sarker, B., Nahiun, K. M., & Khan, R. A. (2019). A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Materials Engineering Research, 1(2), 88–99. DOI: https://doi.org/10.25082/MER.2019.02.007

            Li, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., Nelson, K., & Ragauskas, A. J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering, 200. DOI: https://doi.org/10.1016/j.compositesb.2020.108254

            Zhou, Y., Fan, M., & Chen, L. (2016). Interface and bonding mechanisms of plant fibre composites: An overview. Composites Part B: Engineering, 101, 31-45. DOI: https://doi.org/10.1016/j.compositesb.2016.06.055

            Joshi, S. V. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371–376. DOI: https://doi.org/10.1016/j.compositesa.2003.09.016

            Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1632–1637. DOI: https://doi.org/10.1016/j.compositesa.2008.07.007

            Arrakhiz, F. Z., Malha, M., Bouhfid, R., Benmoussa, K., & Qaiss, A. (2013). Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Composites Part B: Engineering, 47, 35–41. DOI: https://doi.org/10.1016/j.compositesb.2012.10.046

            Hoyos, C. G., Alvarez, V. A., Rojo, P. G., & Vázquez, A. (2012). Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers and Polymers, 13(5), 632–640. DOI: https://doi.org/10.1007/s12221-012-0632-8

            Atmakuri, A., Palevicius, A., Vilkauskas, A., & Janusas, G. (2020). Review of hybrid fiber based composites with nano particles—material properties and applications. Polymers, 12(9), 2088. DOI: https://doi.org/10.3390/polym12092088

            Schiffman, J. D., & Schauer, C. L. (2008). A review: Electrospinning of biopolymer nanofibers and their applications. Polymer Reviews, 48(2), 317–352. DOI: https://doi.org/10.1080/15583720802022182

            Pickering, K. (2008). Properties and performance of natural-fibre composites. Elsevier. DOI: https://doi.org/10.1533/9781845694593

            Behnam Hosseini, S. (2020). Natural fiber polymer nanocomposites. Fiber-Reinforced Nanocomposites: Fundamentals and Applications, 279–299. DOI: https://doi.org/10.1016/B978-0-12-819904-6.00013-X

            Choi, H. Y., Wu, H. Y. T., & Chang, fu K. (1991). A New Approach toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part II—Analysis. Journal of Composite Materials, 25(8), 1012–1038. DOI: https://doi.org/10.1177/002199839102500804

            Roy, M. (2013b). Surface engineering for enhanced performance against wear. Springer. DOI: https://doi.org/10.1007/978-3-7091-0101-8

            Jawaid, M., Chee, S. S., Asim, M., Saba, N., & Kalia, S. (2022). Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: Properties, environmental aspects and applications. Journal of Cleaner Production, 330, 129938. DOI: https://doi.org/10.1016/j.jclepro.2021.129938

            Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829–892. DOI: https://doi.org/10.1007/s10853-019-03990-y

            Amjad, A., Awais, H., Anjang Ab Rahman, A., & Abidin, M. S. Z. (2022b). Effect of nanofillers on mechanical and water absorption properties of alkaline treated flax/PLA fibre reinforced epoxy hybrid nanocomposites. Advanced Composite Materials, 31(4), 351–369.

            Yang, J., Guo, Y., Yao, L., Ni, Q., & Qiu, Y. (2018). Effects of Kevlar volume fraction and fabric structures on the mechanical properties of 3D orthogonal woven ramie/Kevlar reinforced poly (lactic acid) composites. Journal of Industrial Textiles, 47(8), 2074–2091. DOI: https://doi.org/10.1177/1528083717720204

            Amjad, A., Awais, H., Anjang Ab Rahman, A. and Abidin, M.S.Z., 2022. Effect of nanofillers on mechanical and water absorption properties of alkaline treated flax/PLA fibre reinforced epoxy hybrid nanocomposites. Advanced composite materials, 31(4), pp.351-369. DOI: https://doi.org/10.1080/09243046.2021.1993563

            Ramu, P., Jaya Kumar, C. V., & Palanikumar, K. (2019). Mechanical characteristics and terminological behavior study on natural fiber nano reinforced polymer composite - A review. Materials Today: Proceedings, 16, 1287–1296. DOI: https://doi.org/10.1016/j.matpr.2019.05.226

            Godara, M. S. S. (2019). Effect of chemical modification of fiber surface on natural fiber composites: A review. Materials Today: Proceedings, 18, 3428–3434. DOI: https://doi.org/10.1016/j.matpr.2019.07.270

            Bledzki, A. K., Mamun, A. A., Lucka-Gabor, M., & Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), 413–422. DOI: https://doi.org/10.3144/expresspolymlett.2008.50

            Ferreira, D. P., Cruz, J., & Fangueiro, R. (2018). Surface modification of natural fibers in polymer composites. In Green Composites for Automotive Applications. Elsevier Ltd. DOI: https://doi.org/10.1016/B978-0-08-102177-4.00001-X

            Vinayagamoorthy, R. (2019). Influence of fiber surface modifications on the mechanical behavior of Vetiveria zizanioides reinforced polymer composites. Journal of Natural Fibers, 16(2), 163–174. DOI: https://doi.org/10.1080/15440478.2017.1410513

            Khan, J., & Mariatti, M. (2021). The Influence of Substrate Functionalization for Enhancing the Interfacial Bonding between Graphene Oxide and Nonwoven Polyester. Fibers and Polymers, 22(11), 3192–3202. DOI: https://doi.org/10.1007/s12221-021-1386-y

            Silva, R., Haraguchi, S.K., Muniz, E.C. and Rubira, A.F., 2009. Applications of lignocellulosic fibers in polymer chemistry and in composites. Química nova, 32, pp.661-671. DOI: https://doi.org/10.1590/S0100-40422009000300010

            Correia, C. A., & Valera, T. S. (2019). Cellulose Nanocrystals and Jute Fiber-reinforced Natural Rubber Composites: Cure characteristics and mechanical properties. Materials Research, 22, 1–9.

            Amjad, A., Abidin, M. S. Z., Alshahrani, H., & Ab Rahman, A. A. (2021b). Effect of fibre surface treatment and nanofiller addition on the mechanical properties of flax/PLA fibre reinforced epoxy hybrid nanocomposite. Polymers, 13(21), 3842.

            Ashok, K. G., & Kalaichelvan, K. (2020). Mechanical, ballistic impact, and water absorption behavior of luffa/graphene reinforced epoxy composites. Polymer Composites, 41(11), 4716–4726. DOI: https://doi.org/10.1002/pc.25745

            Saba, N., Jawaid, M., Alothman, O. Y., Paridah, M. T., & Hassan, A. (2016). Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, 35(6), 447–470. DOI: https://doi.org/10.1177/0731684415618459

            Shokrieh, M. M., Kefayati, A. R., & Chitsazzadeh, M. (2012). Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete. Materials & Design, 40, 443–452. DOI: https://doi.org/10.1016/j.matdes.2012.03.008

            Calcagno, C. I. W., Mariani, C. M., Teixeira, S. R., & Mauler, R. S. (2008). The role of the MMT on the morphology and mechanical properties of the PP/PET blends. Composites Science and Technology, 68(10–11), 2193–2200. DOI: https://doi.org/10.1016/j.compscitech.2008.03.012

            Kordkheili, H. Y., Farsi, M., & Rezazadeh, Z. (2013). Physical, mechanical and morphological properties of polymer composites manufactured from carbon nanotubes and wood flour. Composites Part B: Engineering, 44(1), 750–755. DOI: https://doi.org/10.1016/j.compositesb.2012.04.023

            Amjad, A., Abidin, M. S. Z., Alshahrani, H., & Ab Rahman, A. A. (2021a). Effect of fibre surface treatment and nanofiller addition on the mechanical properties of flax/pla fibre reinforced epoxy hybrid nanocomposite. Polymers, 13(21).

            Franco-Urquiza, E. A., & Renter’ia-Rodr’iguez, A. V. (2021). Effect of nanoparticles on the mechanical properties of kenaf fiber-reinforced bio-based epoxy resin. Textile Research Journal, 91(11–12), 1313–1325. DOI: https://doi.org/10.1177/0040517520980459

            Chowdary, M. S., Raghavendra, G., Kumar, M. N., Ojha, S., & Boggarapu, V. (2022). Influence of nano-silica on enhancing the mechanical properties of sisal/kevlar fiber reinforced polyester hybrid composites. Silicon, 1-8.

            Bazyar, B., & Samariha, A. (2017). Thermal, flammability, and morphological properties of nano-composite from fir wood flour and polypropylene. BioResources, 12(3), 6665–6678. DOI: https://doi.org/10.15376/biores.12.3.6665-6678

            Islam, S., Atiqah, N., Hasbullah, B., Hasan, M., Abidin, Z., Jawaid, M., & Haafiz, M. K. M. (2015). Physical , mechanical and biodegradable properties of kenaf / coir hybrid fiber reinforced polymer nanocomposites. Materials Today Communications, 4, 69–76.

            R Bhoopathi, M. R. (2020). Influence of Eggshell Nanoparticles and Effect of Alkalization on Characterization of Industrial Hemp Fibre Reinforced Epoxy Composites. Journal of Polymers and the Environment, 0123456789. DOI: https://doi.org/10.1007/s10924-020-01756-1

            Lebaron, P. C., Wang, Z., & Pinnavaia, T. J. (1999). Polymer-layered silicate nanocomposites: An overview. Applied Clay Science, 15(1–2), 11–29. DOI: https://doi.org/10.1016/S0169-1317(99)00017-4

            Hasan, S. (2015). A review on nanoparticles: their synthesis and types. Res. J. Recent Sci, 2277, 2502.

            Tamayo, L., Palza, H., Bejarano, J., & Zapata, P. A. (2018). Polymer Composites With Metal Nanoparticles: Synthesis, Properties, and Applications. Synthesis, Properties, and Applications. In Polymer Composites with Functionalized Nanoparticles: Synthesis, Properties, and Applications (Issue May 2019). DOI: https://doi.org/10.1016/B978-0-12-814064-2.00008-1

            Haque, A., Shamsuzzoha, M., Hussain, F., & Dean, D. (2003). S2-glass/epoxy polymer nanocomposites: Manufacturing, structures, thermal and mechanical properties. Journal of Composite Materials, 37(20), 1821–1838. DOI: https://doi.org/10.1177/002199803035186

            Yong, V., & Hahn, H. T. (2004). Processing and properties of SiC/vinyl ester nanocomposites. Nanotechnology, 15(9), 1338–1343. DOI: https://doi.org/10.1088/0957-4484/15/9/038

            Crosby, A. J., & Lee, J. Y. (2007). Polymer nanocomposites: The “nano” effect on mechanical properties. Polymer Reviews, 47(2), 217–229. DOI: https://doi.org/10.1080/15583720701271278

            Billah, S. M. R. (2019). Composites and nanocomposites. In Functional Polymers. Springer Nature Switzerland AG 2019. DOI: https://doi.org/10.1007/978-3-319-95987-0_15

            Manjunath, M., Renukappa, N. M., & Suresha, B. (2016). Influence of micro and nanofillers on mechanical properties of pultruded unidirectional glass fiber reinforced epoxy composite systems. Journal of Composite Materials, 50(8), 1109–1121. DOI: https://doi.org/10.1177/0021998315588623

            Amjad, A., Anjang Ab Rahman, A. and Abidin, M.S.Z., 2022. Effect of nanofillers on mechanical and water absorption properties of alkaline treated jute fiber reinforced epoxy bio nanocomposites. Journal of Natural Fibers, 19(16), pp.14592-14608.

            Akpan, E. I., Shen, X., Wetzel, B., & Friedrich, K. (2019). Design and synthesis of polymer nanocomposites. In Polymer composites with functionalized nanoparticles (pp. 47–83). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-814064-2.00002-0

            Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., & Liou, N. (2016). Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber. 1–16. DOI: https://doi.org/10.3390/ma9080644

            Chun, S., Lee, S., Doh, G., Lee, S., & Hyeun, J. (2011). Journal of Industrial and Engineering Chemistry Preparation of ultrastrength nanopapers using cellulose nanofibrils. Journal of Industrial and Engineering Chemistry, 17(3), 521–526. DOI: https://doi.org/10.1016/j.jiec.2010.10.022

            Wong, J. C. H., Kaymak, H., Tingaut, P., Brunner, S., & Koebel, M. M. (2015). Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Microporous and Mesoporous Materials, 217, 150–158. DOI: https://doi.org/10.1016/j.micromeso.2015.06.025

            Zhang, Y., Liu, H., Li, Q., Fu, S., & others. (2016). Morphology, healing and mechanical performance of nanofibrillated cellulose reinforced poly ($varepsilon$-caprolactone)/epoxy composites. Composites Science and Technology, 125, 62–70. DOI: https://doi.org/10.1016/j.compscitech.2016.01.008

            Khalil, H. P. S. A., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydrate Polymers, 99, 649–665. DOI: https://doi.org/10.1016/j.carbpol.2013.08.069

            Nasir, M., Hashim, R., Sulaiman, O., & Asim, M. (2017). Nanocellulose: Preparation methods and applications. In Cellulose-reinforced nanofibre composites (pp. 261–276). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-100957-4.00011-5

            Mandal, A., & Chakrabarty, D. (2014). Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly (vinyl alcohol) and nanocellulose from sugarcane bagasse. Journal of Industrial and Engineering Chemistry, 20(2), 462-473. DOI: https://doi.org/10.1016/j.jiec.2013.05.003

            Rosamah, E., HPS, A. K., Yap, S. W., Saurabh, C. K., Tahir, P. M., Dungani, R., & Owolabi, A. F. (2018). The role of bamboo nanoparticles in kenaf fiber reinforced unsaturated polyester composites. Journal of Renewable Materials, 6(1), 75. DOI: https://doi.org/10.7569/JRM.2017.634152

            Mohammed, M., Rahman, R., Mohammed, A. M., Osman, A. F., Adam, T., Dahham, O. S., Hashim, U., Noriman, N. Z., & Betar, B. O. (2018). Fabrication and characterization of zinc oxide nanoparticle-treated kenaf polymer composites for weather resistance based on a solar UV radiation. BioResources, 13(3), 6480–6496. DOI: https://doi.org/10.15376/biores.13.3.6480-6496

            Ibrahim, I. D., Jamiru, T., Sadiku, E. R., Kupolati, W. K., & Agwuncha, S. C. (2016a). Impact of surface modification and nanoparticle on sisal fiber reinforced polypropylene nanocomposites. Journal of Nanotechnology, 2016.

            Mohan, T. P., & Kanny, K. (2011). Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 42(4), 385–393. DOI: https://doi.org/10.1016/j.compositesa.2010.12.010

            Vieira, L. M. G., Santos, J. C. dos, Panzera, T. H., Christoforo, A. L., Mano, V., Campos Rubio, J. C., & Scarpa, F. (2018). Hybrid composites based on sisal fibers and silica nanoparticles. Polymer Composites, 39(1), 146–156. DOI: https://doi.org/10.1002/pc.23915

            Yadav, S. M., & Yusoh, K. Bin. (2016). Preparation and characterization of wood plastic composite reinforced by organoclay. Journal of the Indian Academy of Wood Science, 13(2), 118–131. https://doi.org/10.1007/s13196-016-0175-5 DOI: https://doi.org/10.1007/s13196-016-0175-5

            Rabbi, M. S., Islam, T., & Islam, G. M. S. (2021). Injection-molded natural fiber-reinforced polymer composites – a review. International Journal of Mechanical and Materials Engineering, 1–21. DOI: https://doi.org/10.1186/s40712-021-00139-1

            Yee, Y. Y., Chee Ching, Y., Rozali, S., Awanis Hashim, N., & Singh, R. (2016). PLA composite with OPEFB. BioResources, 11(1), 2269–2286. DOI: https://doi.org/10.15376/biores.11.1.2269-2286

            Rana, S. S., & Gupta, M. K. (2021). Fabrication of bionanocomposites reinforced with hemp nanocellulose and evaluation of their mechanical, thermal and dynamic mechanical properties. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(11), 2470–2481. DOI: https://doi.org/10.1177/14644207211004640

            Chen, R. S., & Ahmad, S. (2017). Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics. Materials Chemistry and Physics, 198, 57–65. DOI: https://doi.org/10.1016/j.matchemphys.2017.05.054

            Hemath, M., Tengsuthiwat, J., Mavinkere Rangappa, S., Siengchin, S., Khan, A., Marwani, H. M., Dzudzevic-Cancar, H., & Asiri, A. M. (2021). Effect of TiC nanoparticles on accelerated weathering of coir fiber filler and basalt fabric reinforced bio/synthetic epoxy hybrid composites: Physicomechanical and thermal characteristics. Polymer Composites, 42(9), 4897–4910. DOI: https://doi.org/10.1002/pc.26198

            Patnaik, A., Satapathy, A., & Biswas, S. (2010). Investigations on three-body abrasive wear and mechanical properties of particulate filled glass epoxy composites. Malaysian Polymer Journal, 5(2), 37–48.

            Salit, M. S., Jawaid, M., Yusoff, N. Bin, & Hoque, M. E. (2015). Manufacturing of natural fibre reinforced polymer composites. In Manufacturing of Natural Fibre Reinforced Polymer Composites. DOI: https://doi.org/10.1007/978-3-319-07944-8

            Das, S., Das, B., & Imam, R. R. (2021). Characterization of Polymer Composite Reinforced With COCONUT COIR TREATED BY KOH. International Conference on Mechanical Engineering and Renewable Energy.

            Nagavally, R. R. (2016). Composite Materials - History, Types, Fabrication Techniques, Advantages, and Applications. International Journal of Mechanical And Production Engineering, 2, 25–30.

            Ho, M. P., Wang, H., Lee, J. H., Ho, C. K., Lau, K. T., Leng, J., & Hui, D. (2012). Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering, 43(8), 3549–3562. DOI: https://doi.org/10.1016/j.compositesb.2011.10.001

            Jaafar, J., Siregar, J. P., Tezara, C., Hamdan, M. H. M., & Rihayat, T. (2019). A review of important considerations in the compression molding process of short natural fiber composites. The International Journal of Advanced Manufacturing Technology, 105(7), 3437–3450. DOI: https://doi.org/10.1007/s00170-019-04466-8

            Idicula, M., Boudenne, A., Umadevi, L., Ibos, L., Candau, Y., & Thomas, S. (2006). Thermophysical properties of natural fibre reinforced polyester composites. Composites Science and Technology, 66(15), 2719–2725. DOI: https://doi.org/10.1016/j.compscitech.2006.03.007

            Kumar, R., & Shelare, S. (2019). Different method of Fabrication of composite material-A review. Journal of Emerging Technologies and Innovative Research, 6(3), 530–538.

            Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806–819. DOI: https://doi.org/10.1016/j.compositesa.2010.03.005

            Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98–112. DOI: https://doi.org/10.1016/j.compositesa.2015.08.038

            Wen, L. E. I., LEI, W., & Chao, R. E. N. (2006). Effect of volume fraction of ramie cloth on physical and mechanical properties of ramie cloth/UP resin composite. Transactions of Nonferrous Metals Society of China, 16, s474--s477. DOI: https://doi.org/10.1016/S1003-6326(06)60237-9

            Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Av, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-Based Bio- and Nanocomposites : A Review. International Journal of Polymer Science, 2011, 1–35. DOI: https://doi.org/10.1155/2011/837875

            Fang, X., Bi, C., Hong, Y., Cho, K. H., Park, M. S., Wang, Y., & Yao, D. (2016). Rapid vacuum infusion and curing of epoxy composites with a rubber-cushioned mold design. Polymer-Plastics Technology and Engineering, 55(10), 1030–1038. DOI: https://doi.org/10.1080/03602559.2015.1132453

            Lotfi, A., Li, H., Dao, D. V., & Prusty, G. (2021a). Natural fiber--reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials, 34(2), 238–284.

            Agwa, M.A., Youssef, S.M., Ali-Eldin, S.S. and Megahed, M., (2020). Integrated vacuum assisted resin infusion and resin transfer molding technique for manufacturing of nano-filled glass fiber reinforced epoxy composite. Journal of Industrial Textiles, 51(3_suppl), pp.5113S-5144S. DOI: https://doi.org/10.1177/1528083720932337

            Xiang, H., Ling, H., Wang, J., Song, L., & Gu, Y. (2005). A novel high performance RTM resin based on benzoxazine. Polymer Composites, 26(5), 563–571. DOI: https://doi.org/10.1002/pc.20105

            Li, J., Zhang, C., Liang, R., & Wang, B. (2005). Statistical characterization and robust design of RTM processes. Composites Part A: Applied Science and Manufacturing, 36(5), 564–580. DOI: https://doi.org/10.1016/j.compositesa.2004.10.001

            Lee, C.-L., & Wei, K.-H. (2000). Effect of material and process variables on the performance of resin-transfer-molded epoxy fabric composites. Journal of Applied Polymer Science, 77(10), 2149–2155. DOI: https://doi.org/10.1002/1097-4628(20000906)77:10<2149::AID-APP7>3.0.CO;2-J

            Njuguna, J., Wambua, P., Pielichowski, K., & Kayvantash, K. (2011). Natural fibre-reinforced polymer composites and nanocomposites for automotive applications. In Cellulose fibers: bio-and nano-polymer composites (pp. 661–700). Springer. DOI: https://doi.org/10.1007/978-3-642-17370-7_23

            Francucci, G., Rodríguez, E.S. and Vázquez, A., 2012. Experimental study of the compaction response of jute fabrics in liquid composite molding processes. Journal of Composite Materials, 46(2), pp.155-167. DOI: https://doi.org/10.1177/0021998311410484

            Kang, M. K., Jung, J. J., & Lee, W. Il. (2000). Analysis of resin transfer moulding process with controlled multiple gates resin injection. Composites Part A: Applied Science and Manufacturing, 31(5), 407–422. DOI: https://doi.org/10.1016/S1359-835X(99)00086-X

            Ricciardi, M. R., Antonucci, V., Durante, M., Giordano, M., Nele, L., Starace, G., & Langella, A. (2014). A new cost-saving vacuum infusion process for fiber-reinforced composites: Pulsed infusion. Journal of Composite Materials, 48(11), 1365–1373. DOI: https://doi.org/10.1177/0021998313485998

            Vila, J., González, C., & LLorca, J. (2017). Fabric compaction and infiltration during vacuum-assisted resin infusion with and without distribution medium. Journal of Composite Materials, 51(5), 687–703. DOI: https://doi.org/10.1177/0021998316649783

            Saputra, A. H., & Ibrahim, R. H. (2018). The effect of woven roving fiberglass total layers on resin infusion time in vacuum infusion. IOP Conference Series: Materials Science and Engineering, 345(1), 12032. DOI: https://doi.org/10.1088/1757-899X/345/1/012032

            Francucci, G., Palmer, S., & Hall, W. (2018). External compaction pressure over vacuum-bagged composite parts: effect on the quality of flax fiber/epoxy laminates. Journal of Composite Materials, 52(1), 3–15. DOI: https://doi.org/10.1177/0021998317701998

            Bender, D., Schuster, J., & Heider, D. (2006). Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing. Composites Science and Technology, 66(13), 2265–2271. DOI: https://doi.org/10.1016/j.compscitech.2005.12.008

            Lee, J.-M., Kim, B.-M., & Ko, D.-C. (2019). Development of vacuum-assisted prepreg compression molding for production of automotive roof panels. Composite Structures, 213, 144–152. DOI: https://doi.org/10.1016/j.compstruct.2019.01.092

            Yenilmez, B., Senan, M., & Sozer, E. M. (2009). Variation of part thickness and compaction pressure in vacuum infusion process. Composites Science and Technology, 69(11–12), 1710–1719. DOI: https://doi.org/10.1016/j.compscitech.2008.05.009

            CRIPPS, D., SEARLE, T. J., & SUMMERSCALES, J. (2000). Open Mold Techniques for Thermoset Composites. Comprehensive Composite Materials, 737–761. DOI: https://doi.org/10.1016/B0-08-042993-9/00188-1

            Joshi, S. C. (2012). The pultrusion process for polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs). Woodhead Publishing Limited. DOI: https://doi.org/10.1533/9780857096258.3.381

            Sharma, D., McCarty, T. A., Roux, J. A., & Vaughan, J. G. (1998). Investigation of dynamic pressure behavior in a pultrusion die. Journal of Composite Materials, 32(10), 929–950. DOI: https://doi.org/10.1177/002199839803201002

            Alshgari, R. A., Sargunan, K., Kumar, C. S. R., Vinayagam, M. V., Madhusudhanan, J., Sivakumar, S., ... & Ramasubramanian, G. (2022). Effect of Fiber Mixing and Nanoclay on the Mechanical Properties of Biodegradable Natural Fiber-Based Nanocomposites. Journal of Nanomaterials, 2022. DOI: https://doi.org/10.1155/2022/4994658

            Balasubramanian, K., Sultan, M. T. H., & Rajeswari, N. (2018). Manufacturing techniques of composites for aerospace applications. Sustainable Composites for Aerospace Applications, 55–67. DOI: https://doi.org/10.1016/B978-0-08-102131-6.00004-9

            WD Callister Jr, D. R. (2020). Callister’s Materials Science and Engineering.

            White, J. R. (1985). On the layer removal analysis of residual stress - Part 1 Polymer mouldings with depth-varying Young’s modulus. Journal of Materials Science, 20(7), 2377–2387. DOI: https://doi.org/10.1007/BF00556067

            Zhao, N., Lian, J., Wang, P., & Xu, Z. (2022). Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: A review. The International Journal of Advanced Manufacturing Technology, 1–17. DOI: https://doi.org/10.1007/s00170-022-08859-0

            Kim, S.-K., Lee, S.-W., & Youn, J.-R. (2002). Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation. Korea-Australia Rheology Journal, 14(3), 107–114.

            Azeem, M., Ya, H. H., Kumar, M., Stabla Pawełand Smolnicki, M. G. L., Khan, R., Ahmed, T., Ma, Q., Sadique, M. R., & others. (2022). Application of filament winding technology in composite pressure vessels and challenges: a review. Journal of Energy Storage, 49, 103468. DOI: https://doi.org/10.1016/j.est.2021.103468

            Vargas-Rojas, E. (2022). Prescriptive comprehensive approach for the engineering of products made with composites centered on the manufacturing process and structured design methods: Review study performed on filament winding. Composites Part B: Engineering, 110093. DOI: https://doi.org/10.1016/j.compositesb.2022.110093

            Sun, G., Wang, Z., Hong, J., Song, K., & Li, Q. (2018). Experimental investigation of the quasi-static axial crushing behavior of filament-wound CFRP and aluminum/CFRP hybrid tubes. Composite Structures, 194, 208–225. DOI: https://doi.org/10.1016/j.compstruct.2018.02.005

            Zhang, Q., Wu, J., Gao, L., Liu, T., Zhong, W., Sui, G., & Yang, X. (2016). Influence of a liquid-like MWCNT reinforcement on interfacial and mechanical properties of carbon fiber filament winding composites. Polymer, 90, 193–203. DOI: https://doi.org/10.1016/j.polymer.2016.03.013

            Billah, M. M., Rabbi, M. S., & Hasan, A. (2021). A review on developments in manufacturing process and mechanical properties of natural fiber composites. Journal of Engineering Advancements, 2(01), 13-23. DOI: https://doi.org/10.38032/jea.2021.01.003

            Rajeshkumar, G., Seshadri, S. A., Ramakrishnan, S., Sanjay, M. R., Siengchin, S., & Nagaraja, K. C. (2021). A comprehensive review on natural fiber/nano-clay reinforced hybrid polymeric composites: Materials and technologies. Polymer Composites, 42(8), 3687–3701. DOI: https://doi.org/10.1002/pc.26110

            Guo, F., Aryana, S., Han, Y., & Jiao, Y. (2018). A review of the synthesis and applications of polymer--nanoclay composites. Applied Sciences, 8(9), 1696. DOI: https://doi.org/10.3390/app8091696

            Kenned, J. J., Sankaranarayanasamy, K., & Kumar, C. S. (2021). Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: A review. Polymers and Polymer Composites, 29(7), 1011–1038. DOI: https://doi.org/10.1177/0967391120942419

            Hosseini, S. B., Hedjazi, S., Jamalirad, L., & Sukhtesaraie, A. (2014). Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs). Journal of the Indian Academy of Wood Science, 11(2), 116–121. DOI: https://doi.org/10.1007/s13196-014-0126-y

            Mohammed, M., Betar, B. O., Rahman, R., Mohammed, A. M., Osman, A. F., Jaafar, M., Adam, T., Dahham, O. S., Hashim, U., & Noriman, N. Z. (2019). Zinc oxide nano particles integrated kenaf/unsaturated polyester biocomposite. Journal of Renewable Materials, 7(10), 967–982. DOI: https://doi.org/10.32604/jrm.2019.07562

            Ramakrishnan, S., Krishnamurthy, K., Rajasekar, R., & Rajeshkumar, G. (2019). An experimental study on the effect of nano-clay addition on mechanical and water absorption behaviour of jute fibre reinforced epoxy composites. Journal of Industrial Textiles, 49(5), 597–620. DOI: https://doi.org/10.1177/1528083718792915

            Nayak, S., Nayak, R. K., & Panigrahi, I. (2021). Effect of nano-fillers on low-velocity impact properties of synthetic and natural fibre reinforced polymer composites- a review. Advances in Materials and Processing Technologies, 00(00), 1–24.

            Patel, K., Patel, J., Gohil, P., & Chaudhary, V. (2018). Effect of nano clay on mechanical behavior of bamboo fiber reinforced polyester composites. Applied Mechanics and Materials, 877, 294–298. DOI: https://doi.org/10.4028/www.scientific.net/AMM.877.294

            Majid, M.A., Ridzuan, M.J.M. and Lim, K.H., 2020. Effect of nanoclay filler on mechanical and morphological properties of napier/epoxy composites. In Interfaces in Particle and Fibre Reinforced Composites (pp. 137-162). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-08-102665-6.00006-6

            Wang, A., Xian, G., & Li, H. (2019). Effects of fiber surface grafting with nano-clay on the hydrothermal ageing behaviors of flax fiber/epoxy composite plates. Polymers, 11(8), 1278. DOI: https://doi.org/10.3390/polym11081278

            Haq, M., Burgueño, R., Mohanty, A. K., & Misra, M. (2008). Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Composites Science and Technology, 68(15–16), 3344–3351. DOI: https://doi.org/10.1016/j.compscitech.2008.09.007

            del Pino, G., Kieling, A. C., Bezazi, A., Boumediri, H., de Souza, J. F., Valenzuela D’iaz, F., Valin Rivera, J. L., Dehaini, J., & Panzera, T. H. (2020). Hybrid polyester composites reinforced with curauá fibres and nanoclays. Fibers and Polymers, 21(2), 399–406. DOI: https://doi.org/10.1007/s12221-020-9506-7

            Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667. DOI: https://doi.org/10.1002/app.31787

            Das, P. P., Chaudhary, V., Ahmad, F., & Manral, A. (2021). Effect of nanotoxicity and enhancement in performance of polymer composites using nanofillers: A state-of-the-art review. Polymer Composites, 42(5), 2152–2170. DOI: https://doi.org/10.1002/pc.25968

            Kord, B. (2012). Effect of nanoparticles loading on properties of polymeric composite based on hemp fiber/polypropylene. Journal of Thermoplastic Composite Materials, 25(7), 793–806. DOI: https://doi.org/10.1177/0892705711412815

            Singh, T., Gangil, B., Ranakoti, L., & Joshi, A. (2021). Effect of silica nanoparticles on physical, mechanical, and wear properties of natural fiber reinforced polymer composites. Polymer Composites, 42(5), 2396–2407. DOI: https://doi.org/10.1002/pc.25986

            Zhou, S., Li, J., Kang, S., & Zhang, D. (2022). Effect of carbonized ramosissima nanoparticles on mechanical properties of bamboo fiber/epoxy composites. Journal of Natural Fibers, 19(4), 1239–1248. DOI: https://doi.org/10.1080/15440478.2020.1764448

            Ghalehno, M. D., Kord, B., & Sheshkal, B. N. (2020). MECHANICAL AND PHYSICAL PROPERTIES OF WOOD/POLYETHYLENE COMPOSITE REINFORCED WITH TIO 2 NANOPARTICLES. Cerne, 26, 474–481 DOI: https://doi.org/10.1590/01047760202026042753

            Sumesh, K. R., & Kanthavel, K. (2019). Green Synthesis of Aluminium Oxide Nanoparticles and its Applications in Mechanical and Thermal Stability of Hybrid Natural Composites. Journal of Polymers and the Environment, 27(10), 2189–2200. DOI: https://doi.org/10.1007/s10924-019-01506-y

            Torres, M., Rodriguez, V. R., Alcantara, P. I., & Franco-Urquiza, E. (2022). Mechanical properties and fracture behaviour of agave fibers bio-based epoxy laminates reinforced with zinc oxide. Journal of Industrial Textiles, 51(4), 5847S-5868S. DOI: https://doi.org/10.1177/1528083720965689

            Mylsamy, B., Palaniappan, S. K., Subramani, S. P., Pal, S. K., & Aruchamy, K. (2019). Impact of nanoclay on mechanical and structural properties of treated Coccinia indica fibre reinforced epoxy composites. Journal of Materials Research and Technology, 8(6), 6021–6028. DOI: https://doi.org/10.1016/j.jmrt.2019.09.076

            Fahrina, A., Yusuf, M., Muchtar, S., Fitriani, F., Mulyati, S., Aprilia, S., Rosnelly, C. M., Bilad, M. R., Ismail, A. F., Takagi, R., Matsuyama, H., & Arahman, N. (2021). Development of anti-microbial polyvinylidene fluoride (PVDF) membrane using bio-based ginger extract-silica nanoparticles (GE-SiNPs) for bovine serum albumin (BSA) filtration. Journal of the Taiwan Institute of Chemical Engineers, 125, 323–331. DOI: https://doi.org/10.1016/j.jtice.2021.06.010

            Ganesan, K., Kailasanathan, C., Rajini, N., Kalirasu, S., Ismail, S. O., Siengchin, S., & Ayrilmis, N. (n.d.). Assessment on jute/coir fibers reinforced polyester hybrid composites with hybrid fillers under different environmental conditions.

            Bahari-Sambran, F., Eslami-Farsani, R., & Arbab Chirani, S. (2020). The flexural and impact behavior of the laminated aluminum-epoxy/basalt fibers composites containing nanoclay: an experimental investigation. Journal of Sandwich Structures & Materials, 22(6), 1931–1951. DOI: https://doi.org/10.1177/1099636218792693

            Shahroze, R. M., Ishak, M. R., Salit, M. S., Leman, Z., Asim, M., & Chandrasekar, M. (2018). Effect of organo-modified nanoclay on the mechanical properties of sugar palm fiber-reinforced polyester composites. BioResources, 13(4), 7430–7444. DOI: https://doi.org/10.15376/biores.13.4.7430-7444

            Correia, C. A., & Valera, T. S. (2019). Cellulose nanocrystals and jute fiber-reinforced natural rubber composites: cure characteristics and mechanical properties. Materials Research, 22. DOI: https://doi.org/10.1590/1980-5373-mr-2019-0192

            Govindhasamy, K., & Arulmurugan, S. (2016). Mechanical characterization of jute fibre nanocomposites. Int J Emerg Technol Comput Sci Electron, 21, 521–524.

            Abdel-Rahman, H.A., Awad, E.H. and Fathy, R.M., 2020. Effect of modified nano zinc oxide on physico-chemical and antimicrobial properties of gamma-irradiated sawdust/epoxy composites. Journal of Composite Materials, 54(3), pp.331-343. DOI: https://doi.org/10.1177/0021998319863835

            Chaharmahali, M., Hamzeh, Y., Ebrahimi, G., Ashori, A., & Ghasemi, I. (2014). Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polymer Bulletin, 71(2), 337–349. DOI: https://doi.org/10.1007/s00289-013-1064-3

            Ashori, A. (2013). Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites. Journal of Composite Materials, 47(2), 149–154. DOI: https://doi.org/10.1177/0021998312437234

            Islam, M. S., Ahmad, M. B., Hasan, M., Aziz, S. A., Jawaid, M., Haafiz, M. M., & Zakaria, S. A. (2015). Natural fiber-reinforced hybrid polymer nanocomposites: effect of fiber mixing and nanoclay on physical, mechanical, and biodegradable properties. BioResources, 10(1), 1394-1407. DOI: https://doi.org/10.15376/biores.10.1.1394-1407

            Karthik Babu, N. B., Muthukumaran, S., Ramesh, T., & Arokiasamy, S. (2021). Effect of Agro-waste Microcoir Pith and Nano-alumina Reinforcement on Thermal Degradation and Dynamic Mechanical Behavior of Polyester Composites. Journal of Natural Fibers, 18(4), 581–593. DOI: https://doi.org/10.1080/15440478.2019.1636745

            Hallad, S. A., Banapurmath, N. R., Patil, V., Ajarekar, V. S., Patil, A., Godi, M. T., & Shettar, A. S. (2018). Graphene Reinforced Natural Fiber Nanocomposites for Structural Applications. IOP Conference Series: Materials Science and Engineering, 376(1). DOI: https://doi.org/10.1088/1757-899X/376/1/012072

            Prasad, A. V. R., Rao, K. B., Rao, K. M., Ramanaiah, K., & Gudapati, S. P. K. (2015). Influence of nanoclay on the mechanical performance of wild cane grass fiber-reinforced polyester nanocomposites. International Journal of Polymer Analysis and Characterization, 20(6), 541–556. DOI: https://doi.org/10.1080/1023666X.2015.1053335

            Venkatram, B., Kailasanathan, C., Seenikannan, P., & Paramasamy, S. (2016). Study on the evaluation of mechanical and thermal properties of natural sisal fiber/general polymer composites reinforced with nanoclay. International Journal of Polymer Analysis and Characterization, 21(7), 647–656. DOI: https://doi.org/10.1080/1023666X.2016.1194616

            Deepak, K., Vattikuti, S. V. P., & Venkatesh, B. (2015). Experimental Investigation of Jute FiberReinforcedNano Clay Composite. Procedia Materials Science, 10, 238–242. DOI: https://doi.org/10.1016/j.mspro.2015.06.046

            Bay, M. A., Khademieslam, H., Bazyar, B., & Najafi, A. (2021). Mechanical and Thermal Properties of Nanocomposite Films Made of Polyvinyl Alcohol / Nanofiber Cellulose and Nanosilicon Dioxide using Ultrasonic Method. 17(2), 65–76. DOI: https://doi.org/10.15376/biores.17.1.1031-1046

            Rosamah, E., Hossain, M. S., Abdul Khalil, H. P. S., Wan Nadirah, W. O., Dungani, R., Nur Amiranajwa, A. S., Suraya, N. L. M., Fizree, H. M., & Mohd Omar, A. K. (2017). Properties enhancement using oil palm shell nanoparticles of fibers reinforced polyester hybrid composites. Advanced Composite Materials, 26(3), 259–272. DOI: https://doi.org/10.1080/09243046.2016.1145875

            Atchudan, R., Pandurangan, A., & Joo, J. (2015). Effects of nanofillers on the thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. Journal of Nanoscience and Nanotechnology, 15(6), 4255–4267. DOI: https://doi.org/10.1166/jnn.2015.9706

            Calabi Floody, M., Theng, B. K. G., Reyes, P., & Mora, M. L. (2009). Natural nanoclays: applications and future trends – a Chilean perspective. Clay Minerals, 44(2), 161–176. DOI: https://doi.org/10.1180/claymin.2009.044.2.161

            Ibrahim, I. D., Jamiru, T., Sadiku, E. R., Kupolati, W. K., & Agwuncha, S. C. (2016b). Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nanocomposites. Journal of Nanotechnology, 2016, 9–11. DOI: https://doi.org/10.1155/2016/4235975

            Hasan, M. H., Mollik, M. S., & Rashid, M. M. (2018). Effect of nanoclay on thermal behavior of jute reinforced composite. International Journal of Advanced Manufacturing Technology, 94(5–8), 1863–1871. DOI: https://doi.org/10.1007/s00170-017-0883-z

            Kord, B. (2011). Nanofiller reinforcement effects on the thermal, dynamic mechanical, and morphological behavior of HDPE/rice husk flour composites. BioResources, 6(2), 1351–1358. DOI: https://doi.org/10.15376/biores.6.2.1351-1358

            Sumesh, K. R., Kanthavel, K., Ajithram, A., & Nandhini, P. (2019). Bioalumina Nano Powder Extraction and its Applications for Sisal, Coir and Banana Hybrid Fiber Composites: Mechanical and Thermal Properties. Journal of Polymers and the Environment, 27(9), 2068–2077. DOI: https://doi.org/10.1007/s10924-019-01496-x

            Islam, M S, Talib, Z. A., Hasan, M., Ramli, I., Haafiz, M. K. M., Jawaid, M., Islam, A., & Inuwa, I. M. (2017). Evaluation of mechanical, morphological, and biodegradable properties of hybrid natural fiber polymer nanocomposites. Polymer Composites, 38(3), 583–587. DOI: https://doi.org/10.1002/pc.23616

            Alhuthali, A., Low, I. M., & Dong, C. (2012). Characterisation of the water absorption, mechanical and thermal properties of recycled cellulose fibre reinforced vinyl-ester eco-nanocomposites. Composites Part B: Engineering, 43(7), 2772-2781. DOI: https://doi.org/10.1016/j.compositesb.2012.04.038

            Amjad, A., Abidin, M. S. Z., Alshahrani, H., & Ab Rahman, A. A. (2021). Effect of fibre surface treatment and nanofiller addition on the mechanical properties of flax/PLA fibre reinforced epoxy hybrid nanocomposite. Polymers, 13(21), 3842. DOI: https://doi.org/10.3390/polym13213842

            Amjad, A., Anjang Ab Rahman, A., & Abidin, M. S. Z. (2022). Effect of nanofillers on mechanical and water absorption properties of alkaline treated jute fiber reinforced epoxy bio nanocomposites. Journal of Natural Fibers, 19(16), 14592-14608. DOI: https://doi.org/10.1080/15440478.2022.2068171

            Islam, Md Saiful, Hasbullah, N. A. B., Hasan, M., Talib, Z. A., Jawaid, M., & Haafiz, M. K. M. (2015). Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Materials Today Communications, 4, 69–76. DOI: https://doi.org/10.1016/j.mtcomm.2015.05.001

            Xia, C., Shi, S. Q., & Cai, L. (2015). Vacuum-assisted resin infusion (VARI) and hot pressing for CaCO3 nanoparticle treated kenaf fiber reinforced composites. Composites Part B: Engineering, 78, 138–143. DOI: https://doi.org/10.1016/j.compositesb.2015.03.039

            Dahmardeh Ghalehno, M., & Kord, B. (2021). Preparation, characterization and performance evaluation of wood flour/HDPE foamed composites reinforced with graphene nanoplatelets. Journal of Composite Materials, 55(4), 531–540. DOI: https://doi.org/10.1177/0021998320954527

            Farsheh, A. T., Talaeipour, M., Hemmasi, A. H., Khademieslam, H., & Ghasemi, I. (2011). Investigation on the mechanical and morphological properties of foamed nanocomposites based on wood flour/PVC/multi-walled carbon nanotube. BioResources, 6(1), 841–852. DOI: https://doi.org/10.15376/biores.6.1.841-852

            Babaei, I., Madanipour, M., Farsi, M., & Farajpoor, A. (2014). Physical and mechanical properties of foamed HDPE/wheat straw flour/nanoclay hybrid composite. Composites Part B: Engineering, 56, 163–170. DOI: https://doi.org/10.1016/j.compositesb.2013.08.039

            Dahmardeh Ghalehno, M., & Arabi, M. (2021). A study on the effect of nano-ZnO on hygroscopic characteristics of PP/Wood flour composites. Plastics, Rubber and Composites, 50(10), 516–523. DOI: https://doi.org/10.1080/14658011.2021.1931768

            Sumesh, K. R., & Kanthavel, K. (2020). Effect of TiO2 nano-filler in mechanical and free vibration damping behavior of hybrid natural fiber composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4). DOI: https://doi.org/10.1007/s40430-020-02308-3

            Chowdary, M. S., Raghavendra, G., Kumar, M. S. R. N., Ojha, S., & Boggarapu, V. (2022). Influence of Nano-Silica on Enhancing the Mechanical Properties of Sisal/Kevlar Fiber Reinforced Polyester Hybrid Composites. Silicon, 14(2), 539–546. DOI: https://doi.org/10.1007/s12633-020-00846-y

            Bensadoun, F., Verpoest, I., & Van Vuure, A. W. (2017). Interlaminar fracture toughness of flax-epoxy composites. Journal of Reinforced Plastics and Composites, 36(2), 121-136. DOI: https://doi.org/10.1177/0731684416672925

            Saidane, E. H., Scida, D., Pac, M. J., & Ayad, R. (2019). Mode-I interlaminar fracture toughness of flax, glass and hybrid flax-glass fibre woven composites: Failure mechanism evaluation using acoustic emission analysis. Polymer Testing, 75, 246-253. DOI: https://doi.org/10.1016/j.polymertesting.2019.02.022

            Almansour, F. A., Dhakal, H. N., & Zhang, Z. Y. (2018). Investigation into Mode II interlaminar fracture toughness characteristics of flax/basalt reinforced vinyl ester hybrid composites. Composites Science and Technology, 154, 117-127. DOI: https://doi.org/10.1016/j.compscitech.2017.11.016

            Prasad, V., Sekar, K., Varghese, S., & Joseph, M. A. (2019). Enhancing Mode I and Mode II interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2. Composites Part A: Applied Science and Manufacturing, 124, 105505. DOI: https://doi.org/10.1016/j.compositesa.2019.105505

            Shinoj, S., Visvanathan, R., Panigrahi, S., & Kochubabu, M. (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, 33(1), 7–22. DOI: https://doi.org/10.1016/j.indcrop.2010.09.009

            Lotfi, A., Li, H., Dao, D. V., & Prusty, G. (2021b). Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials, 34(2), 238–284. DOI: https://doi.org/10.1177/0892705719844546

            Miao, M., & Finn, N. (2008). Conversion of natural fibres into structural composites. Journal of Textile Engineering, 54(6), 165–177. DOI: https://doi.org/10.4188/jte.54.165

            Hasan, K. M. F., Horváth, P. G., & Alpár, T. (2020). Potential natural fiber polymeric nanobiocomposites: A review. Polymers, 12(5). DOI: https://doi.org/10.3390/polym12051072

            Kalishwaralal, K., Jeyabharathi, S., Sundar, K., Selvamani, S., Prasanna, M., & Muthukumaran, A. (2018). A novel biocompatible chitosan--Selenium nanoparticles (SeNPs) film with electrical conductivity for cardiac tissue engineering application. Materials Science and Engineering: C, 92, 151–160. DOI: https://doi.org/10.1016/j.msec.2018.06.036

            Youssef, A. M., El-Sayed, S. M., Salama, H. H., El-Sayed, H. S., & Dufresne, A. (2015). Evaluation of bionanocomposites as packaging material on properties of soft white cheese during storage period. Carbohydrate Polymers, 132, 274–285. DOI: https://doi.org/10.1016/j.carbpol.2015.06.075

            Dayo, A. Q., Gao, B. chang, Wang, J., Liu, W. bin, Derradji, M., Shah, A. H., & Babar, A. A. (2017). Natural hemp fiber reinforced polybenzoxazine composites: Curing behavior, mechanical and thermal properties. Composites Science and Technology, 144, 114–124. DOI: https://doi.org/10.1016/j.compscitech.2017.03.024

            Downloads

            Published

            04-11-2023

            Issue

            Section

            Review Articles

            How to Cite

            Rabbi, M.S. (2023) “Effect of Nano-filler on the Manufacturing and Properties of Natural Fiber-based Composites: A Review”, Journal of Engineering Advancements, 4(04), pp. 101–115. doi:10.38032/jea.2023.04.001.

            Most read articles by the same author(s)