Effect of Nano-filler on the Manufacturing and Properties of Natural Fiber-based Composites: A Review
DOI:
https://doi.org/10.38032/jea.2023.04.001Keywords:
Natural fiber-based composites, Nanofiller, Manufacturing, PropertiesAbstract
Natural fiber reinforced polymer composite offers ecological safety towards a sustainable environment. Meanwhile, the deficiency of the poor interfacial bonding between fiber and matrix draws the attention of researchers to be sorted out. The use of inorganic nanofiller is considered as a possible solution to overcome the hurdle nowadays besides strengthening the composite properties. This article thoroughly reviews the use of inorganic nanofillers in natural fiber composites, covering different manufacturing processes and properties. Factors of various manufacturing techniques occupied for composite fabrication are investigated. Moreover, the influences of different nanofillers on mechanical, thermal, chemical, and physical properties of composites are discussed. In addition, Scanning Electron Microscopy (SEM) images of the bio composites are critically reviewed that usually exhibit the interfacial bonding and the fractures of the specimen. Furthermore, application of such natural fiber composites and the future investigation pathway in using inorganic nanofiller in composite are narrated.
References
Gowthaman, N. S. K., Lim, H. N., Sreeraj, T. R., Amalraj, A., & Gopi, S. (2021). Advantages of biopolymers over synthetic polymers: Social, economic, and environmental aspects. In Biopolymers and Their Industrial Applications (pp. 351-372). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-819240-5.00015-8
Mahir, F. I., Keya, K. N., Sarker, B., Nahiun, K. M., & Khan, R. A. (2019). A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Materials Engineering Research, 1(2), 88–99. DOI: https://doi.org/10.25082/MER.2019.02.007
Li, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., Nelson, K., & Ragauskas, A. J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering, 200. DOI: https://doi.org/10.1016/j.compositesb.2020.108254
Zhou, Y., Fan, M., & Chen, L. (2016). Interface and bonding mechanisms of plant fibre composites: An overview. Composites Part B: Engineering, 101, 31-45. DOI: https://doi.org/10.1016/j.compositesb.2016.06.055
Joshi, S. V. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371–376. DOI: https://doi.org/10.1016/j.compositesa.2003.09.016
Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 39(10), 1632–1637. DOI: https://doi.org/10.1016/j.compositesa.2008.07.007
Arrakhiz, F. Z., Malha, M., Bouhfid, R., Benmoussa, K., & Qaiss, A. (2013). Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Composites Part B: Engineering, 47, 35–41. DOI: https://doi.org/10.1016/j.compositesb.2012.10.046
Hoyos, C. G., Alvarez, V. A., Rojo, P. G., & Vázquez, A. (2012). Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers and Polymers, 13(5), 632–640. DOI: https://doi.org/10.1007/s12221-012-0632-8
Atmakuri, A., Palevicius, A., Vilkauskas, A., & Janusas, G. (2020). Review of hybrid fiber based composites with nano particles—material properties and applications. Polymers, 12(9), 2088. DOI: https://doi.org/10.3390/polym12092088
Schiffman, J. D., & Schauer, C. L. (2008). A review: Electrospinning of biopolymer nanofibers and their applications. Polymer Reviews, 48(2), 317–352. DOI: https://doi.org/10.1080/15583720802022182
Pickering, K. (2008). Properties and performance of natural-fibre composites. Elsevier. DOI: https://doi.org/10.1533/9781845694593
Behnam Hosseini, S. (2020). Natural fiber polymer nanocomposites. Fiber-Reinforced Nanocomposites: Fundamentals and Applications, 279–299. DOI: https://doi.org/10.1016/B978-0-12-819904-6.00013-X
Choi, H. Y., Wu, H. Y. T., & Chang, fu K. (1991). A New Approach toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part II—Analysis. Journal of Composite Materials, 25(8), 1012–1038. DOI: https://doi.org/10.1177/002199839102500804
Roy, M. (2013b). Surface engineering for enhanced performance against wear. Springer. DOI: https://doi.org/10.1007/978-3-7091-0101-8
Jawaid, M., Chee, S. S., Asim, M., Saba, N., & Kalia, S. (2022). Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: Properties, environmental aspects and applications. Journal of Cleaner Production, 330, 129938. DOI: https://doi.org/10.1016/j.jclepro.2021.129938
Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829–892. DOI: https://doi.org/10.1007/s10853-019-03990-y
Amjad, A., Awais, H., Anjang Ab Rahman, A., & Abidin, M. S. Z. (2022b). Effect of nanofillers on mechanical and water absorption properties of alkaline treated flax/PLA fibre reinforced epoxy hybrid nanocomposites. Advanced Composite Materials, 31(4), 351–369.
Yang, J., Guo, Y., Yao, L., Ni, Q., & Qiu, Y. (2018). Effects of Kevlar volume fraction and fabric structures on the mechanical properties of 3D orthogonal woven ramie/Kevlar reinforced poly (lactic acid) composites. Journal of Industrial Textiles, 47(8), 2074–2091. DOI: https://doi.org/10.1177/1528083717720204
Amjad, A., Awais, H., Anjang Ab Rahman, A. and Abidin, M.S.Z., 2022. Effect of nanofillers on mechanical and water absorption properties of alkaline treated flax/PLA fibre reinforced epoxy hybrid nanocomposites. Advanced composite materials, 31(4), pp.351-369. DOI: https://doi.org/10.1080/09243046.2021.1993563
Ramu, P., Jaya Kumar, C. V., & Palanikumar, K. (2019). Mechanical characteristics and terminological behavior study on natural fiber nano reinforced polymer composite - A review. Materials Today: Proceedings, 16, 1287–1296. DOI: https://doi.org/10.1016/j.matpr.2019.05.226
Godara, M. S. S. (2019). Effect of chemical modification of fiber surface on natural fiber composites: A review. Materials Today: Proceedings, 18, 3428–3434. DOI: https://doi.org/10.1016/j.matpr.2019.07.270
Bledzki, A. K., Mamun, A. A., Lucka-Gabor, M., & Gutowski, V. S. (2008). The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), 413–422. DOI: https://doi.org/10.3144/expresspolymlett.2008.50
Ferreira, D. P., Cruz, J., & Fangueiro, R. (2018). Surface modification of natural fibers in polymer composites. In Green Composites for Automotive Applications. Elsevier Ltd. DOI: https://doi.org/10.1016/B978-0-08-102177-4.00001-X
Vinayagamoorthy, R. (2019). Influence of fiber surface modifications on the mechanical behavior of Vetiveria zizanioides reinforced polymer composites. Journal of Natural Fibers, 16(2), 163–174. DOI: https://doi.org/10.1080/15440478.2017.1410513
Khan, J., & Mariatti, M. (2021). The Influence of Substrate Functionalization for Enhancing the Interfacial Bonding between Graphene Oxide and Nonwoven Polyester. Fibers and Polymers, 22(11), 3192–3202. DOI: https://doi.org/10.1007/s12221-021-1386-y
Silva, R., Haraguchi, S.K., Muniz, E.C. and Rubira, A.F., 2009. Applications of lignocellulosic fibers in polymer chemistry and in composites. Química nova, 32, pp.661-671. DOI: https://doi.org/10.1590/S0100-40422009000300010
Correia, C. A., & Valera, T. S. (2019). Cellulose Nanocrystals and Jute Fiber-reinforced Natural Rubber Composites: Cure characteristics and mechanical properties. Materials Research, 22, 1–9.
Amjad, A., Abidin, M. S. Z., Alshahrani, H., & Ab Rahman, A. A. (2021b). Effect of fibre surface treatment and nanofiller addition on the mechanical properties of flax/PLA fibre reinforced epoxy hybrid nanocomposite. Polymers, 13(21), 3842.
Ashok, K. G., & Kalaichelvan, K. (2020). Mechanical, ballistic impact, and water absorption behavior of luffa/graphene reinforced epoxy composites. Polymer Composites, 41(11), 4716–4726. DOI: https://doi.org/10.1002/pc.25745
Saba, N., Jawaid, M., Alothman, O. Y., Paridah, M. T., & Hassan, A. (2016). Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. Journal of Reinforced Plastics and Composites, 35(6), 447–470. DOI: https://doi.org/10.1177/0731684415618459
Shokrieh, M. M., Kefayati, A. R., & Chitsazzadeh, M. (2012). Fabrication and mechanical properties of clay/epoxy nanocomposite and its polymer concrete. Materials & Design, 40, 443–452. DOI: https://doi.org/10.1016/j.matdes.2012.03.008
Calcagno, C. I. W., Mariani, C. M., Teixeira, S. R., & Mauler, R. S. (2008). The role of the MMT on the morphology and mechanical properties of the PP/PET blends. Composites Science and Technology, 68(10–11), 2193–2200. DOI: https://doi.org/10.1016/j.compscitech.2008.03.012
Kordkheili, H. Y., Farsi, M., & Rezazadeh, Z. (2013). Physical, mechanical and morphological properties of polymer composites manufactured from carbon nanotubes and wood flour. Composites Part B: Engineering, 44(1), 750–755. DOI: https://doi.org/10.1016/j.compositesb.2012.04.023
Amjad, A., Abidin, M. S. Z., Alshahrani, H., & Ab Rahman, A. A. (2021a). Effect of fibre surface treatment and nanofiller addition on the mechanical properties of flax/pla fibre reinforced epoxy hybrid nanocomposite. Polymers, 13(21).
Franco-Urquiza, E. A., & Renter’ia-Rodr’iguez, A. V. (2021). Effect of nanoparticles on the mechanical properties of kenaf fiber-reinforced bio-based epoxy resin. Textile Research Journal, 91(11–12), 1313–1325. DOI: https://doi.org/10.1177/0040517520980459
Chowdary, M. S., Raghavendra, G., Kumar, M. N., Ojha, S., & Boggarapu, V. (2022). Influence of nano-silica on enhancing the mechanical properties of sisal/kevlar fiber reinforced polyester hybrid composites. Silicon, 1-8.
Bazyar, B., & Samariha, A. (2017). Thermal, flammability, and morphological properties of nano-composite from fir wood flour and polypropylene. BioResources, 12(3), 6665–6678. DOI: https://doi.org/10.15376/biores.12.3.6665-6678
Islam, S., Atiqah, N., Hasbullah, B., Hasan, M., Abidin, Z., Jawaid, M., & Haafiz, M. K. M. (2015). Physical , mechanical and biodegradable properties of kenaf / coir hybrid fiber reinforced polymer nanocomposites. Materials Today Communications, 4, 69–76.
R Bhoopathi, M. R. (2020). Influence of Eggshell Nanoparticles and Effect of Alkalization on Characterization of Industrial Hemp Fibre Reinforced Epoxy Composites. Journal of Polymers and the Environment, 0123456789. DOI: https://doi.org/10.1007/s10924-020-01756-1
Lebaron, P. C., Wang, Z., & Pinnavaia, T. J. (1999). Polymer-layered silicate nanocomposites: An overview. Applied Clay Science, 15(1–2), 11–29. DOI: https://doi.org/10.1016/S0169-1317(99)00017-4
Hasan, S. (2015). A review on nanoparticles: their synthesis and types. Res. J. Recent Sci, 2277, 2502.
Tamayo, L., Palza, H., Bejarano, J., & Zapata, P. A. (2018). Polymer Composites With Metal Nanoparticles: Synthesis, Properties, and Applications. Synthesis, Properties, and Applications. In Polymer Composites with Functionalized Nanoparticles: Synthesis, Properties, and Applications (Issue May 2019). DOI: https://doi.org/10.1016/B978-0-12-814064-2.00008-1
Haque, A., Shamsuzzoha, M., Hussain, F., & Dean, D. (2003). S2-glass/epoxy polymer nanocomposites: Manufacturing, structures, thermal and mechanical properties. Journal of Composite Materials, 37(20), 1821–1838. DOI: https://doi.org/10.1177/002199803035186
Yong, V., & Hahn, H. T. (2004). Processing and properties of SiC/vinyl ester nanocomposites. Nanotechnology, 15(9), 1338–1343. DOI: https://doi.org/10.1088/0957-4484/15/9/038
Crosby, A. J., & Lee, J. Y. (2007). Polymer nanocomposites: The “nano” effect on mechanical properties. Polymer Reviews, 47(2), 217–229. DOI: https://doi.org/10.1080/15583720701271278
Billah, S. M. R. (2019). Composites and nanocomposites. In Functional Polymers. Springer Nature Switzerland AG 2019. DOI: https://doi.org/10.1007/978-3-319-95987-0_15
Manjunath, M., Renukappa, N. M., & Suresha, B. (2016). Influence of micro and nanofillers on mechanical properties of pultruded unidirectional glass fiber reinforced epoxy composite systems. Journal of Composite Materials, 50(8), 1109–1121. DOI: https://doi.org/10.1177/0021998315588623
Amjad, A., Anjang Ab Rahman, A. and Abidin, M.S.Z., 2022. Effect of nanofillers on mechanical and water absorption properties of alkaline treated jute fiber reinforced epoxy bio nanocomposites. Journal of Natural Fibers, 19(16), pp.14592-14608.
Akpan, E. I., Shen, X., Wetzel, B., & Friedrich, K. (2019). Design and synthesis of polymer nanocomposites. In Polymer composites with functionalized nanoparticles (pp. 47–83). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-814064-2.00002-0
Choo, K., Ching, Y. C., Chuah, C. H., Julai, S., & Liou, N. (2016). Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber. 1–16. DOI: https://doi.org/10.3390/ma9080644
Chun, S., Lee, S., Doh, G., Lee, S., & Hyeun, J. (2011). Journal of Industrial and Engineering Chemistry Preparation of ultrastrength nanopapers using cellulose nanofibrils. Journal of Industrial and Engineering Chemistry, 17(3), 521–526. DOI: https://doi.org/10.1016/j.jiec.2010.10.022
Wong, J. C. H., Kaymak, H., Tingaut, P., Brunner, S., & Koebel, M. M. (2015). Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Microporous and Mesoporous Materials, 217, 150–158. DOI: https://doi.org/10.1016/j.micromeso.2015.06.025
Zhang, Y., Liu, H., Li, Q., Fu, S., & others. (2016). Morphology, healing and mechanical performance of nanofibrillated cellulose reinforced poly ($varepsilon$-caprolactone)/epoxy composites. Composites Science and Technology, 125, 62–70. DOI: https://doi.org/10.1016/j.compscitech.2016.01.008
Khalil, H. P. S. A., Davoudpour, Y., Islam, M. N., Mustapha, A., Sudesh, K., Dungani, R., & Jawaid, M. (2014). Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydrate Polymers, 99, 649–665. DOI: https://doi.org/10.1016/j.carbpol.2013.08.069
Nasir, M., Hashim, R., Sulaiman, O., & Asim, M. (2017). Nanocellulose: Preparation methods and applications. In Cellulose-reinforced nanofibre composites (pp. 261–276). Elsevier. DOI: https://doi.org/10.1016/B978-0-08-100957-4.00011-5
Mandal, A., & Chakrabarty, D. (2014). Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly (vinyl alcohol) and nanocellulose from sugarcane bagasse. Journal of Industrial and Engineering Chemistry, 20(2), 462-473. DOI: https://doi.org/10.1016/j.jiec.2013.05.003
Rosamah, E., HPS, A. K., Yap, S. W., Saurabh, C. K., Tahir, P. M., Dungani, R., & Owolabi, A. F. (2018). The role of bamboo nanoparticles in kenaf fiber reinforced unsaturated polyester composites. Journal of Renewable Materials, 6(1), 75. DOI: https://doi.org/10.7569/JRM.2017.634152
Mohammed, M., Rahman, R., Mohammed, A. M., Osman, A. F., Adam, T., Dahham, O. S., Hashim, U., Noriman, N. Z., & Betar, B. O. (2018). Fabrication and characterization of zinc oxide nanoparticle-treated kenaf polymer composites for weather resistance based on a solar UV radiation. BioResources, 13(3), 6480–6496. DOI: https://doi.org/10.15376/biores.13.3.6480-6496
Ibrahim, I. D., Jamiru, T., Sadiku, E. R., Kupolati, W. K., & Agwuncha, S. C. (2016a). Impact of surface modification and nanoparticle on sisal fiber reinforced polypropylene nanocomposites. Journal of Nanotechnology, 2016.
Mohan, T. P., & Kanny, K. (2011). Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 42(4), 385–393. DOI: https://doi.org/10.1016/j.compositesa.2010.12.010
Vieira, L. M. G., Santos, J. C. dos, Panzera, T. H., Christoforo, A. L., Mano, V., Campos Rubio, J. C., & Scarpa, F. (2018). Hybrid composites based on sisal fibers and silica nanoparticles. Polymer Composites, 39(1), 146–156. DOI: https://doi.org/10.1002/pc.23915
Yadav, S. M., & Yusoh, K. Bin. (2016). Preparation and characterization of wood plastic composite reinforced by organoclay. Journal of the Indian Academy of Wood Science, 13(2), 118–131. https://doi.org/10.1007/s13196-016-0175-5 DOI: https://doi.org/10.1007/s13196-016-0175-5
Rabbi, M. S., Islam, T., & Islam, G. M. S. (2021). Injection-molded natural fiber-reinforced polymer composites – a review. International Journal of Mechanical and Materials Engineering, 1–21. DOI: https://doi.org/10.1186/s40712-021-00139-1
Yee, Y. Y., Chee Ching, Y., Rozali, S., Awanis Hashim, N., & Singh, R. (2016). PLA composite with OPEFB. BioResources, 11(1), 2269–2286. DOI: https://doi.org/10.15376/biores.11.1.2269-2286
Rana, S. S., & Gupta, M. K. (2021). Fabrication of bionanocomposites reinforced with hemp nanocellulose and evaluation of their mechanical, thermal and dynamic mechanical properties. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(11), 2470–2481. DOI: https://doi.org/10.1177/14644207211004640
Chen, R. S., & Ahmad, S. (2017). Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics. Materials Chemistry and Physics, 198, 57–65. DOI: https://doi.org/10.1016/j.matchemphys.2017.05.054
Hemath, M., Tengsuthiwat, J., Mavinkere Rangappa, S., Siengchin, S., Khan, A., Marwani, H. M., Dzudzevic-Cancar, H., & Asiri, A. M. (2021). Effect of TiC nanoparticles on accelerated weathering of coir fiber filler and basalt fabric reinforced bio/synthetic epoxy hybrid composites: Physicomechanical and thermal characteristics. Polymer Composites, 42(9), 4897–4910. DOI: https://doi.org/10.1002/pc.26198
Patnaik, A., Satapathy, A., & Biswas, S. (2010). Investigations on three-body abrasive wear and mechanical properties of particulate filled glass epoxy composites. Malaysian Polymer Journal, 5(2), 37–48.
Salit, M. S., Jawaid, M., Yusoff, N. Bin, & Hoque, M. E. (2015). Manufacturing of natural fibre reinforced polymer composites. In Manufacturing of Natural Fibre Reinforced Polymer Composites. DOI: https://doi.org/10.1007/978-3-319-07944-8
Das, S., Das, B., & Imam, R. R. (2021). Characterization of Polymer Composite Reinforced With COCONUT COIR TREATED BY KOH. International Conference on Mechanical Engineering and Renewable Energy.
Nagavally, R. R. (2016). Composite Materials - History, Types, Fabrication Techniques, Advantages, and Applications. International Journal of Mechanical And Production Engineering, 2, 25–30.
Ho, M. P., Wang, H., Lee, J. H., Ho, C. K., Lau, K. T., Leng, J., & Hui, D. (2012). Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering, 43(8), 3549–3562. DOI: https://doi.org/10.1016/j.compositesb.2011.10.001
Jaafar, J., Siregar, J. P., Tezara, C., Hamdan, M. H. M., & Rihayat, T. (2019). A review of important considerations in the compression molding process of short natural fiber composites. The International Journal of Advanced Manufacturing Technology, 105(7), 3437–3450. DOI: https://doi.org/10.1007/s00170-019-04466-8
Idicula, M., Boudenne, A., Umadevi, L., Ibos, L., Candau, Y., & Thomas, S. (2006). Thermophysical properties of natural fibre reinforced polyester composites. Composites Science and Technology, 66(15), 2719–2725. DOI: https://doi.org/10.1016/j.compscitech.2006.03.007
Kumar, R., & Shelare, S. (2019). Different method of Fabrication of composite material-A review. Journal of Emerging Technologies and Innovative Research, 6(3), 530–538.
Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806–819. DOI: https://doi.org/10.1016/j.compositesa.2010.03.005
Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98–112. DOI: https://doi.org/10.1016/j.compositesa.2015.08.038
Wen, L. E. I., LEI, W., & Chao, R. E. N. (2006). Effect of volume fraction of ramie cloth on physical and mechanical properties of ramie cloth/UP resin composite. Transactions of Nonferrous Metals Society of China, 16, s474--s477. DOI: https://doi.org/10.1016/S1003-6326(06)60237-9
Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Av, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-Based Bio- and Nanocomposites : A Review. International Journal of Polymer Science, 2011, 1–35. DOI: https://doi.org/10.1155/2011/837875
Fang, X., Bi, C., Hong, Y., Cho, K. H., Park, M. S., Wang, Y., & Yao, D. (2016). Rapid vacuum infusion and curing of epoxy composites with a rubber-cushioned mold design. Polymer-Plastics Technology and Engineering, 55(10), 1030–1038. DOI: https://doi.org/10.1080/03602559.2015.1132453
Lotfi, A., Li, H., Dao, D. V., & Prusty, G. (2021a). Natural fiber--reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials, 34(2), 238–284.
Agwa, M.A., Youssef, S.M., Ali-Eldin, S.S. and Megahed, M., (2020). Integrated vacuum assisted resin infusion and resin transfer molding technique for manufacturing of nano-filled glass fiber reinforced epoxy composite. Journal of Industrial Textiles, 51(3_suppl), pp.5113S-5144S. DOI: https://doi.org/10.1177/1528083720932337
Xiang, H., Ling, H., Wang, J., Song, L., & Gu, Y. (2005). A novel high performance RTM resin based on benzoxazine. Polymer Composites, 26(5), 563–571. DOI: https://doi.org/10.1002/pc.20105
Li, J., Zhang, C., Liang, R., & Wang, B. (2005). Statistical characterization and robust design of RTM processes. Composites Part A: Applied Science and Manufacturing, 36(5), 564–580. DOI: https://doi.org/10.1016/j.compositesa.2004.10.001
Lee, C.-L., & Wei, K.-H. (2000). Effect of material and process variables on the performance of resin-transfer-molded epoxy fabric composites. Journal of Applied Polymer Science, 77(10), 2149–2155. DOI: https://doi.org/10.1002/1097-4628(20000906)77:10<2149::AID-APP7>3.0.CO;2-J
Njuguna, J., Wambua, P., Pielichowski, K., & Kayvantash, K. (2011). Natural fibre-reinforced polymer composites and nanocomposites for automotive applications. In Cellulose fibers: bio-and nano-polymer composites (pp. 661–700). Springer. DOI: https://doi.org/10.1007/978-3-642-17370-7_23
Francucci, G., Rodríguez, E.S. and Vázquez, A., 2012. Experimental study of the compaction response of jute fabrics in liquid composite molding processes. Journal of Composite Materials, 46(2), pp.155-167. DOI: https://doi.org/10.1177/0021998311410484
Kang, M. K., Jung, J. J., & Lee, W. Il. (2000). Analysis of resin transfer moulding process with controlled multiple gates resin injection. Composites Part A: Applied Science and Manufacturing, 31(5), 407–422. DOI: https://doi.org/10.1016/S1359-835X(99)00086-X
Ricciardi, M. R., Antonucci, V., Durante, M., Giordano, M., Nele, L., Starace, G., & Langella, A. (2014). A new cost-saving vacuum infusion process for fiber-reinforced composites: Pulsed infusion. Journal of Composite Materials, 48(11), 1365–1373. DOI: https://doi.org/10.1177/0021998313485998
Vila, J., González, C., & LLorca, J. (2017). Fabric compaction and infiltration during vacuum-assisted resin infusion with and without distribution medium. Journal of Composite Materials, 51(5), 687–703. DOI: https://doi.org/10.1177/0021998316649783
Saputra, A. H., & Ibrahim, R. H. (2018). The effect of woven roving fiberglass total layers on resin infusion time in vacuum infusion. IOP Conference Series: Materials Science and Engineering, 345(1), 12032. DOI: https://doi.org/10.1088/1757-899X/345/1/012032
Francucci, G., Palmer, S., & Hall, W. (2018). External compaction pressure over vacuum-bagged composite parts: effect on the quality of flax fiber/epoxy laminates. Journal of Composite Materials, 52(1), 3–15. DOI: https://doi.org/10.1177/0021998317701998
Bender, D., Schuster, J., & Heider, D. (2006). Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing. Composites Science and Technology, 66(13), 2265–2271. DOI: https://doi.org/10.1016/j.compscitech.2005.12.008
Lee, J.-M., Kim, B.-M., & Ko, D.-C. (2019). Development of vacuum-assisted prepreg compression molding for production of automotive roof panels. Composite Structures, 213, 144–152. DOI: https://doi.org/10.1016/j.compstruct.2019.01.092
Yenilmez, B., Senan, M., & Sozer, E. M. (2009). Variation of part thickness and compaction pressure in vacuum infusion process. Composites Science and Technology, 69(11–12), 1710–1719. DOI: https://doi.org/10.1016/j.compscitech.2008.05.009
CRIPPS, D., SEARLE, T. J., & SUMMERSCALES, J. (2000). Open Mold Techniques for Thermoset Composites. Comprehensive Composite Materials, 737–761. DOI: https://doi.org/10.1016/B0-08-042993-9/00188-1
Joshi, S. C. (2012). The pultrusion process for polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs). Woodhead Publishing Limited. DOI: https://doi.org/10.1533/9780857096258.3.381
Sharma, D., McCarty, T. A., Roux, J. A., & Vaughan, J. G. (1998). Investigation of dynamic pressure behavior in a pultrusion die. Journal of Composite Materials, 32(10), 929–950. DOI: https://doi.org/10.1177/002199839803201002
Alshgari, R. A., Sargunan, K., Kumar, C. S. R., Vinayagam, M. V., Madhusudhanan, J., Sivakumar, S., ... & Ramasubramanian, G. (2022). Effect of Fiber Mixing and Nanoclay on the Mechanical Properties of Biodegradable Natural Fiber-Based Nanocomposites. Journal of Nanomaterials, 2022. DOI: https://doi.org/10.1155/2022/4994658
Balasubramanian, K., Sultan, M. T. H., & Rajeswari, N. (2018). Manufacturing techniques of composites for aerospace applications. Sustainable Composites for Aerospace Applications, 55–67. DOI: https://doi.org/10.1016/B978-0-08-102131-6.00004-9
WD Callister Jr, D. R. (2020). Callister’s Materials Science and Engineering.
White, J. R. (1985). On the layer removal analysis of residual stress - Part 1 Polymer mouldings with depth-varying Young’s modulus. Journal of Materials Science, 20(7), 2377–2387. DOI: https://doi.org/10.1007/BF00556067
Zhao, N., Lian, J., Wang, P., & Xu, Z. (2022). Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: A review. The International Journal of Advanced Manufacturing Technology, 1–17. DOI: https://doi.org/10.1007/s00170-022-08859-0
Kim, S.-K., Lee, S.-W., & Youn, J.-R. (2002). Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation. Korea-Australia Rheology Journal, 14(3), 107–114.
Azeem, M., Ya, H. H., Kumar, M., Stabla Pawełand Smolnicki, M. G. L., Khan, R., Ahmed, T., Ma, Q., Sadique, M. R., & others. (2022). Application of filament winding technology in composite pressure vessels and challenges: a review. Journal of Energy Storage, 49, 103468. DOI: https://doi.org/10.1016/j.est.2021.103468
Vargas-Rojas, E. (2022). Prescriptive comprehensive approach for the engineering of products made with composites centered on the manufacturing process and structured design methods: Review study performed on filament winding. Composites Part B: Engineering, 110093. DOI: https://doi.org/10.1016/j.compositesb.2022.110093
Sun, G., Wang, Z., Hong, J., Song, K., & Li, Q. (2018). Experimental investigation of the quasi-static axial crushing behavior of filament-wound CFRP and aluminum/CFRP hybrid tubes. Composite Structures, 194, 208–225. DOI: https://doi.org/10.1016/j.compstruct.2018.02.005
Zhang, Q., Wu, J., Gao, L., Liu, T., Zhong, W., Sui, G., & Yang, X. (2016). Influence of a liquid-like MWCNT reinforcement on interfacial and mechanical properties of carbon fiber filament winding composites. Polymer, 90, 193–203. DOI: https://doi.org/10.1016/j.polymer.2016.03.013
Billah, M. M., Rabbi, M. S., & Hasan, A. (2021). A review on developments in manufacturing process and mechanical properties of natural fiber composites. Journal of Engineering Advancements, 2(01), 13-23. DOI: https://doi.org/10.38032/jea.2021.01.003
Rajeshkumar, G., Seshadri, S. A., Ramakrishnan, S., Sanjay, M. R., Siengchin, S., & Nagaraja, K. C. (2021). A comprehensive review on natural fiber/nano-clay reinforced hybrid polymeric composites: Materials and technologies. Polymer Composites, 42(8), 3687–3701. DOI: https://doi.org/10.1002/pc.26110
Guo, F., Aryana, S., Han, Y., & Jiao, Y. (2018). A review of the synthesis and applications of polymer--nanoclay composites. Applied Sciences, 8(9), 1696. DOI: https://doi.org/10.3390/app8091696
Kenned, J. J., Sankaranarayanasamy, K., & Kumar, C. S. (2021). Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: A review. Polymers and Polymer Composites, 29(7), 1011–1038. DOI: https://doi.org/10.1177/0967391120942419
Hosseini, S. B., Hedjazi, S., Jamalirad, L., & Sukhtesaraie, A. (2014). Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs). Journal of the Indian Academy of Wood Science, 11(2), 116–121. DOI: https://doi.org/10.1007/s13196-014-0126-y
Mohammed, M., Betar, B. O., Rahman, R., Mohammed, A. M., Osman, A. F., Jaafar, M., Adam, T., Dahham, O. S., Hashim, U., & Noriman, N. Z. (2019). Zinc oxide nano particles integrated kenaf/unsaturated polyester biocomposite. Journal of Renewable Materials, 7(10), 967–982. DOI: https://doi.org/10.32604/jrm.2019.07562
Ramakrishnan, S., Krishnamurthy, K., Rajasekar, R., & Rajeshkumar, G. (2019). An experimental study on the effect of nano-clay addition on mechanical and water absorption behaviour of jute fibre reinforced epoxy composites. Journal of Industrial Textiles, 49(5), 597–620. DOI: https://doi.org/10.1177/1528083718792915
Nayak, S., Nayak, R. K., & Panigrahi, I. (2021). Effect of nano-fillers on low-velocity impact properties of synthetic and natural fibre reinforced polymer composites- a review. Advances in Materials and Processing Technologies, 00(00), 1–24.
Patel, K., Patel, J., Gohil, P., & Chaudhary, V. (2018). Effect of nano clay on mechanical behavior of bamboo fiber reinforced polyester composites. Applied Mechanics and Materials, 877, 294–298. DOI: https://doi.org/10.4028/www.scientific.net/AMM.877.294
Majid, M.A., Ridzuan, M.J.M. and Lim, K.H., 2020. Effect of nanoclay filler on mechanical and morphological properties of napier/epoxy composites. In Interfaces in Particle and Fibre Reinforced Composites (pp. 137-162). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-08-102665-6.00006-6
Wang, A., Xian, G., & Li, H. (2019). Effects of fiber surface grafting with nano-clay on the hydrothermal ageing behaviors of flax fiber/epoxy composite plates. Polymers, 11(8), 1278. DOI: https://doi.org/10.3390/polym11081278
Haq, M., Burgueño, R., Mohanty, A. K., & Misra, M. (2008). Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Composites Science and Technology, 68(15–16), 3344–3351. DOI: https://doi.org/10.1016/j.compscitech.2008.09.007
del Pino, G., Kieling, A. C., Bezazi, A., Boumediri, H., de Souza, J. F., Valenzuela D’iaz, F., Valin Rivera, J. L., Dehaini, J., & Panzera, T. H. (2020). Hybrid polyester composites reinforced with curauá fibres and nanoclays. Fibers and Polymers, 21(2), 399–406. DOI: https://doi.org/10.1007/s12221-020-9506-7
Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667. DOI: https://doi.org/10.1002/app.31787
Das, P. P., Chaudhary, V., Ahmad, F., & Manral, A. (2021). Effect of nanotoxicity and enhancement in performance of polymer composites using nanofillers: A state-of-the-art review. Polymer Composites, 42(5), 2152–2170. DOI: https://doi.org/10.1002/pc.25968
Kord, B. (2012). Effect of nanoparticles loading on properties of polymeric composite based on hemp fiber/polypropylene. Journal of Thermoplastic Composite Materials, 25(7), 793–806. DOI: https://doi.org/10.1177/0892705711412815
Singh, T., Gangil, B., Ranakoti, L., & Joshi, A. (2021). Effect of silica nanoparticles on physical, mechanical, and wear properties of natural fiber reinforced polymer composites. Polymer Composites, 42(5), 2396–2407. DOI: https://doi.org/10.1002/pc.25986
Zhou, S., Li, J., Kang, S., & Zhang, D. (2022). Effect of carbonized ramosissima nanoparticles on mechanical properties of bamboo fiber/epoxy composites. Journal of Natural Fibers, 19(4), 1239–1248. DOI: https://doi.org/10.1080/15440478.2020.1764448
Ghalehno, M. D., Kord, B., & Sheshkal, B. N. (2020). MECHANICAL AND PHYSICAL PROPERTIES OF WOOD/POLYETHYLENE COMPOSITE REINFORCED WITH TIO 2 NANOPARTICLES. Cerne, 26, 474–481 DOI: https://doi.org/10.1590/01047760202026042753
Sumesh, K. R., & Kanthavel, K. (2019). Green Synthesis of Aluminium Oxide Nanoparticles and its Applications in Mechanical and Thermal Stability of Hybrid Natural Composites. Journal of Polymers and the Environment, 27(10), 2189–2200. DOI: https://doi.org/10.1007/s10924-019-01506-y
Torres, M., Rodriguez, V. R., Alcantara, P. I., & Franco-Urquiza, E. (2022). Mechanical properties and fracture behaviour of agave fibers bio-based epoxy laminates reinforced with zinc oxide. Journal of Industrial Textiles, 51(4), 5847S-5868S. DOI: https://doi.org/10.1177/1528083720965689
Mylsamy, B., Palaniappan, S. K., Subramani, S. P., Pal, S. K., & Aruchamy, K. (2019). Impact of nanoclay on mechanical and structural properties of treated Coccinia indica fibre reinforced epoxy composites. Journal of Materials Research and Technology, 8(6), 6021–6028. DOI: https://doi.org/10.1016/j.jmrt.2019.09.076
Fahrina, A., Yusuf, M., Muchtar, S., Fitriani, F., Mulyati, S., Aprilia, S., Rosnelly, C. M., Bilad, M. R., Ismail, A. F., Takagi, R., Matsuyama, H., & Arahman, N. (2021). Development of anti-microbial polyvinylidene fluoride (PVDF) membrane using bio-based ginger extract-silica nanoparticles (GE-SiNPs) for bovine serum albumin (BSA) filtration. Journal of the Taiwan Institute of Chemical Engineers, 125, 323–331. DOI: https://doi.org/10.1016/j.jtice.2021.06.010
Ganesan, K., Kailasanathan, C., Rajini, N., Kalirasu, S., Ismail, S. O., Siengchin, S., & Ayrilmis, N. (n.d.). Assessment on jute/coir fibers reinforced polyester hybrid composites with hybrid fillers under different environmental conditions.
Bahari-Sambran, F., Eslami-Farsani, R., & Arbab Chirani, S. (2020). The flexural and impact behavior of the laminated aluminum-epoxy/basalt fibers composites containing nanoclay: an experimental investigation. Journal of Sandwich Structures & Materials, 22(6), 1931–1951. DOI: https://doi.org/10.1177/1099636218792693
Shahroze, R. M., Ishak, M. R., Salit, M. S., Leman, Z., Asim, M., & Chandrasekar, M. (2018). Effect of organo-modified nanoclay on the mechanical properties of sugar palm fiber-reinforced polyester composites. BioResources, 13(4), 7430–7444. DOI: https://doi.org/10.15376/biores.13.4.7430-7444
Correia, C. A., & Valera, T. S. (2019). Cellulose nanocrystals and jute fiber-reinforced natural rubber composites: cure characteristics and mechanical properties. Materials Research, 22. DOI: https://doi.org/10.1590/1980-5373-mr-2019-0192
Govindhasamy, K., & Arulmurugan, S. (2016). Mechanical characterization of jute fibre nanocomposites. Int J Emerg Technol Comput Sci Electron, 21, 521–524.
Abdel-Rahman, H.A., Awad, E.H. and Fathy, R.M., 2020. Effect of modified nano zinc oxide on physico-chemical and antimicrobial properties of gamma-irradiated sawdust/epoxy composites. Journal of Composite Materials, 54(3), pp.331-343. DOI: https://doi.org/10.1177/0021998319863835
Chaharmahali, M., Hamzeh, Y., Ebrahimi, G., Ashori, A., & Ghasemi, I. (2014). Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polymer Bulletin, 71(2), 337–349. DOI: https://doi.org/10.1007/s00289-013-1064-3
Ashori, A. (2013). Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites. Journal of Composite Materials, 47(2), 149–154. DOI: https://doi.org/10.1177/0021998312437234
Islam, M. S., Ahmad, M. B., Hasan, M., Aziz, S. A., Jawaid, M., Haafiz, M. M., & Zakaria, S. A. (2015). Natural fiber-reinforced hybrid polymer nanocomposites: effect of fiber mixing and nanoclay on physical, mechanical, and biodegradable properties. BioResources, 10(1), 1394-1407. DOI: https://doi.org/10.15376/biores.10.1.1394-1407
Karthik Babu, N. B., Muthukumaran, S., Ramesh, T., & Arokiasamy, S. (2021). Effect of Agro-waste Microcoir Pith and Nano-alumina Reinforcement on Thermal Degradation and Dynamic Mechanical Behavior of Polyester Composites. Journal of Natural Fibers, 18(4), 581–593. DOI: https://doi.org/10.1080/15440478.2019.1636745
Hallad, S. A., Banapurmath, N. R., Patil, V., Ajarekar, V. S., Patil, A., Godi, M. T., & Shettar, A. S. (2018). Graphene Reinforced Natural Fiber Nanocomposites for Structural Applications. IOP Conference Series: Materials Science and Engineering, 376(1). DOI: https://doi.org/10.1088/1757-899X/376/1/012072
Prasad, A. V. R., Rao, K. B., Rao, K. M., Ramanaiah, K., & Gudapati, S. P. K. (2015). Influence of nanoclay on the mechanical performance of wild cane grass fiber-reinforced polyester nanocomposites. International Journal of Polymer Analysis and Characterization, 20(6), 541–556. DOI: https://doi.org/10.1080/1023666X.2015.1053335
Venkatram, B., Kailasanathan, C., Seenikannan, P., & Paramasamy, S. (2016). Study on the evaluation of mechanical and thermal properties of natural sisal fiber/general polymer composites reinforced with nanoclay. International Journal of Polymer Analysis and Characterization, 21(7), 647–656. DOI: https://doi.org/10.1080/1023666X.2016.1194616
Deepak, K., Vattikuti, S. V. P., & Venkatesh, B. (2015). Experimental Investigation of Jute FiberReinforcedNano Clay Composite. Procedia Materials Science, 10, 238–242. DOI: https://doi.org/10.1016/j.mspro.2015.06.046
Bay, M. A., Khademieslam, H., Bazyar, B., & Najafi, A. (2021). Mechanical and Thermal Properties of Nanocomposite Films Made of Polyvinyl Alcohol / Nanofiber Cellulose and Nanosilicon Dioxide using Ultrasonic Method. 17(2), 65–76. DOI: https://doi.org/10.15376/biores.17.1.1031-1046
Rosamah, E., Hossain, M. S., Abdul Khalil, H. P. S., Wan Nadirah, W. O., Dungani, R., Nur Amiranajwa, A. S., Suraya, N. L. M., Fizree, H. M., & Mohd Omar, A. K. (2017). Properties enhancement using oil palm shell nanoparticles of fibers reinforced polyester hybrid composites. Advanced Composite Materials, 26(3), 259–272. DOI: https://doi.org/10.1080/09243046.2016.1145875
Atchudan, R., Pandurangan, A., & Joo, J. (2015). Effects of nanofillers on the thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. Journal of Nanoscience and Nanotechnology, 15(6), 4255–4267. DOI: https://doi.org/10.1166/jnn.2015.9706
Calabi Floody, M., Theng, B. K. G., Reyes, P., & Mora, M. L. (2009). Natural nanoclays: applications and future trends – a Chilean perspective. Clay Minerals, 44(2), 161–176. DOI: https://doi.org/10.1180/claymin.2009.044.2.161
Ibrahim, I. D., Jamiru, T., Sadiku, E. R., Kupolati, W. K., & Agwuncha, S. C. (2016b). Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nanocomposites. Journal of Nanotechnology, 2016, 9–11. DOI: https://doi.org/10.1155/2016/4235975
Hasan, M. H., Mollik, M. S., & Rashid, M. M. (2018). Effect of nanoclay on thermal behavior of jute reinforced composite. International Journal of Advanced Manufacturing Technology, 94(5–8), 1863–1871. DOI: https://doi.org/10.1007/s00170-017-0883-z
Kord, B. (2011). Nanofiller reinforcement effects on the thermal, dynamic mechanical, and morphological behavior of HDPE/rice husk flour composites. BioResources, 6(2), 1351–1358. DOI: https://doi.org/10.15376/biores.6.2.1351-1358
Sumesh, K. R., Kanthavel, K., Ajithram, A., & Nandhini, P. (2019). Bioalumina Nano Powder Extraction and its Applications for Sisal, Coir and Banana Hybrid Fiber Composites: Mechanical and Thermal Properties. Journal of Polymers and the Environment, 27(9), 2068–2077. DOI: https://doi.org/10.1007/s10924-019-01496-x
Islam, M S, Talib, Z. A., Hasan, M., Ramli, I., Haafiz, M. K. M., Jawaid, M., Islam, A., & Inuwa, I. M. (2017). Evaluation of mechanical, morphological, and biodegradable properties of hybrid natural fiber polymer nanocomposites. Polymer Composites, 38(3), 583–587. DOI: https://doi.org/10.1002/pc.23616
Alhuthali, A., Low, I. M., & Dong, C. (2012). Characterisation of the water absorption, mechanical and thermal properties of recycled cellulose fibre reinforced vinyl-ester eco-nanocomposites. Composites Part B: Engineering, 43(7), 2772-2781. DOI: https://doi.org/10.1016/j.compositesb.2012.04.038
Amjad, A., Abidin, M. S. Z., Alshahrani, H., & Ab Rahman, A. A. (2021). Effect of fibre surface treatment and nanofiller addition on the mechanical properties of flax/PLA fibre reinforced epoxy hybrid nanocomposite. Polymers, 13(21), 3842. DOI: https://doi.org/10.3390/polym13213842
Amjad, A., Anjang Ab Rahman, A., & Abidin, M. S. Z. (2022). Effect of nanofillers on mechanical and water absorption properties of alkaline treated jute fiber reinforced epoxy bio nanocomposites. Journal of Natural Fibers, 19(16), 14592-14608. DOI: https://doi.org/10.1080/15440478.2022.2068171
Islam, Md Saiful, Hasbullah, N. A. B., Hasan, M., Talib, Z. A., Jawaid, M., & Haafiz, M. K. M. (2015). Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Materials Today Communications, 4, 69–76. DOI: https://doi.org/10.1016/j.mtcomm.2015.05.001
Xia, C., Shi, S. Q., & Cai, L. (2015). Vacuum-assisted resin infusion (VARI) and hot pressing for CaCO3 nanoparticle treated kenaf fiber reinforced composites. Composites Part B: Engineering, 78, 138–143. DOI: https://doi.org/10.1016/j.compositesb.2015.03.039
Dahmardeh Ghalehno, M., & Kord, B. (2021). Preparation, characterization and performance evaluation of wood flour/HDPE foamed composites reinforced with graphene nanoplatelets. Journal of Composite Materials, 55(4), 531–540. DOI: https://doi.org/10.1177/0021998320954527
Farsheh, A. T., Talaeipour, M., Hemmasi, A. H., Khademieslam, H., & Ghasemi, I. (2011). Investigation on the mechanical and morphological properties of foamed nanocomposites based on wood flour/PVC/multi-walled carbon nanotube. BioResources, 6(1), 841–852. DOI: https://doi.org/10.15376/biores.6.1.841-852
Babaei, I., Madanipour, M., Farsi, M., & Farajpoor, A. (2014). Physical and mechanical properties of foamed HDPE/wheat straw flour/nanoclay hybrid composite. Composites Part B: Engineering, 56, 163–170. DOI: https://doi.org/10.1016/j.compositesb.2013.08.039
Dahmardeh Ghalehno, M., & Arabi, M. (2021). A study on the effect of nano-ZnO on hygroscopic characteristics of PP/Wood flour composites. Plastics, Rubber and Composites, 50(10), 516–523. DOI: https://doi.org/10.1080/14658011.2021.1931768
Sumesh, K. R., & Kanthavel, K. (2020). Effect of TiO2 nano-filler in mechanical and free vibration damping behavior of hybrid natural fiber composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4). DOI: https://doi.org/10.1007/s40430-020-02308-3
Chowdary, M. S., Raghavendra, G., Kumar, M. S. R. N., Ojha, S., & Boggarapu, V. (2022). Influence of Nano-Silica on Enhancing the Mechanical Properties of Sisal/Kevlar Fiber Reinforced Polyester Hybrid Composites. Silicon, 14(2), 539–546. DOI: https://doi.org/10.1007/s12633-020-00846-y
Bensadoun, F., Verpoest, I., & Van Vuure, A. W. (2017). Interlaminar fracture toughness of flax-epoxy composites. Journal of Reinforced Plastics and Composites, 36(2), 121-136. DOI: https://doi.org/10.1177/0731684416672925
Saidane, E. H., Scida, D., Pac, M. J., & Ayad, R. (2019). Mode-I interlaminar fracture toughness of flax, glass and hybrid flax-glass fibre woven composites: Failure mechanism evaluation using acoustic emission analysis. Polymer Testing, 75, 246-253. DOI: https://doi.org/10.1016/j.polymertesting.2019.02.022
Almansour, F. A., Dhakal, H. N., & Zhang, Z. Y. (2018). Investigation into Mode II interlaminar fracture toughness characteristics of flax/basalt reinforced vinyl ester hybrid composites. Composites Science and Technology, 154, 117-127. DOI: https://doi.org/10.1016/j.compscitech.2017.11.016
Prasad, V., Sekar, K., Varghese, S., & Joseph, M. A. (2019). Enhancing Mode I and Mode II interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2. Composites Part A: Applied Science and Manufacturing, 124, 105505. DOI: https://doi.org/10.1016/j.compositesa.2019.105505
Shinoj, S., Visvanathan, R., Panigrahi, S., & Kochubabu, M. (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products, 33(1), 7–22. DOI: https://doi.org/10.1016/j.indcrop.2010.09.009
Lotfi, A., Li, H., Dao, D. V., & Prusty, G. (2021b). Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials, 34(2), 238–284. DOI: https://doi.org/10.1177/0892705719844546
Miao, M., & Finn, N. (2008). Conversion of natural fibres into structural composites. Journal of Textile Engineering, 54(6), 165–177. DOI: https://doi.org/10.4188/jte.54.165
Hasan, K. M. F., Horváth, P. G., & Alpár, T. (2020). Potential natural fiber polymeric nanobiocomposites: A review. Polymers, 12(5). DOI: https://doi.org/10.3390/polym12051072
Kalishwaralal, K., Jeyabharathi, S., Sundar, K., Selvamani, S., Prasanna, M., & Muthukumaran, A. (2018). A novel biocompatible chitosan--Selenium nanoparticles (SeNPs) film with electrical conductivity for cardiac tissue engineering application. Materials Science and Engineering: C, 92, 151–160. DOI: https://doi.org/10.1016/j.msec.2018.06.036
Youssef, A. M., El-Sayed, S. M., Salama, H. H., El-Sayed, H. S., & Dufresne, A. (2015). Evaluation of bionanocomposites as packaging material on properties of soft white cheese during storage period. Carbohydrate Polymers, 132, 274–285. DOI: https://doi.org/10.1016/j.carbpol.2015.06.075
Dayo, A. Q., Gao, B. chang, Wang, J., Liu, W. bin, Derradji, M., Shah, A. H., & Babar, A. A. (2017). Natural hemp fiber reinforced polybenzoxazine composites: Curing behavior, mechanical and thermal properties. Composites Science and Technology, 144, 114–124. DOI: https://doi.org/10.1016/j.compscitech.2017.03.024
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Md Sanaul Rabbi, Snigdha Das, Tasfia Tasneem, M Maruf Billah, Afnan Hasan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Most read articles by the same author(s)
- Md. Maruf Billah, Md. Sanaul Rabbi, Afnan Hasan, A Review on Developments in Manufacturing Process and Mechanical Properties of Natural Fiber Composites , Journal of Engineering Advancements: Vol. 2 No. 01 (2021)
- Md. Tauhidur Rahman, Md Sanaul Rabbi, M. A. Shadab Siddiqui, From Waste to Strength: A Comprehensive Review on Using Fly Ash in Composites with Enhanced Mechanical Properties , Journal of Engineering Advancements: Articles in Press