Numerical Analysis on Cavitation-noise and Fluid-structure Interaction of AU-Outline GAWN Series and B-Series Marine Propellers

Authors

  • Md. Iftekharul Alam Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram-4349, Bangladesh
  • Abidur Rahman Adib Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram-4349, Bangladesh
  • Abdullah Al Rifat Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram-4349, Bangladesh
  • Tafsirul Hassan Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram-4349, Bangladesh https://orcid.org/0000-0001-7048-3608
  • Md. Mizanur Rahman Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram-4349, Bangladesh

DOI:

https://doi.org/10.38032/jea.2023.01.005

Keywords:

Marine Propellers, AU-outline Gawn Series, B-series, Cavitation Noise, Rake Angle

Abstract

Cavitation and cavitation-induced noise are harmful to both marine propellers and marine wildlife. Thus, it is required to reduce cavitation in marine propellers by developing the best design marine propellers. Moreover, proper material should be selected during the construction of marine propellers to withstand high-pressure loads. This paper presents an evaluation of the hydrodynamic characteristics such as cavitation and cavitation-induced noise of AU-outline GAWN series and B-series marine propellers at 0˚, 5˚, 10˚, and 15˚ rake angles using Computational Fluid Dynamics (CFD) analysis. Moreover, the study aims to find out the optimized propeller material among Nickel-Aluminum-Bronze (NAB), S2 glass, Aluminum 6061, and carbon fiber reinforced plastic (CFRP) materials. It is concluded that the lowest cavitation noises are 153.3 dB and 153.1 dB at a 10° rake angle for AU-outline GAWN series and B-Series marine propellers respectively. S2 glass is observed to be the optimum material at low rake angles, while CFRP is the optimum material at high rake angles compared to all other potential materials for both AU-outline GAWN series and B-series propellers.

References

Morgut, M. and Nobile, E., 2012. Influence of grid type and turbulence model on the numerical prediction of the flow around marine propellers working in uniform inflow. Ocean Engineering, 42, pp.26-34. DOI: https://doi.org/10.1016/j.oceaneng.2012.01.012

Kerwin, J.E., 1986. Marine propellers. Annual Review of Fluid Mechanics, 18(1), pp.367-403. DOI: https://doi.org/10.1146/annurev.fl.18.010186.002055

Abrahamsen, K., 2012, July 2012. The ship as an underwater noise source. In Proceedings of Meetings on Acoustics ECUA2012 (Vol. 17, No. 1, p. 070058). Acoustical Society of America. DOI: https://doi.org/10.1121/1.4772953

Wärtsilä Fixed Pitch Propellers. Available at https://www.wartsila.com/marine/products/propulsors-and-gears/propellers/wartsila-fixed-pitch-propellers. (Accessed 18 January, 2023.)

Bertschneider, H., Bosschers, J., Choi, G.H., Ciappi, E., Farabee, T., Kawakita, C. and Tang, D., 2014. Specialist committee on hydrodynamic noise. Final report and recommendations to the 27th ITTC. Copenhagen, Sweden, 45.

Lafeber, F.H., Bosschers, J. and van Wijngaarden, E., 2015, May. Computational and experimental prediction of propeller cavitation noise. In OCEANS 2015-Genova (pp. 1-9). IEEE. DOI: https://doi.org/10.1109/OCEANS-Genova.2015.7271654

Bagheri, M.R., Seif, M.S., Mehdigholi, H. and Yaakob, O., 2017. Analysis of noise behaviour for marine propellers under cavitating and non-cavitating conditions. Ships and Offshore Structures, 12(1), pp.1-8. DOI: https://doi.org/10.1080/17445302.2015.1099224

Usta, O., Aktas, B., Maasch, M., Turan, O., Atlar, M. and Korkut, E., 2017. A study on the numerical prediction of cavitation erosion for propellers. In Proceedings of the Fifth International Symposium on Marine Propulsors - SMP'17 12 - 15 June 2017, Espoo, Finland.

Yamatogi, T., Murayama, H., Uzawa, K., Kageyama, K. and Watanabe, N., 2009, July. Study on cavitation erosion of composite materials for marine propeller. In 17th International Conference on Composite Materials Edinburgh, Scotland.

Harish, B., Prasad, K.S. and Rao, G.U.M., 2015. Static Analysis of 4-Blade Marine Propeller. Journal of Aerospace Engineering & Technology, 5(2), pp.8-21.

Yu, K., Yan, P. and Hu, J., 2020. Numerical analysis of blade stress of marine propellers. Journal of Marine Science and Application, 19, pp.436-443. DOI: https://doi.org/10.1007/s11804-020-00161-3

Ghassemi, H., Gorji, M. and Mohammadi, J., 2018. Effect of tip rake angle on the hydrodynamic characteristics and sound pressure level around the marine propeller. Ships and Offshore Structures, 13(7), pp.759-768. DOI: https://doi.org/10.1080/17445302.2018.1457207

Menter, F.R., 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), pp.1598-1605. DOI: https://doi.org/10.2514/3.12149

Wilcox, D.C., 1988. Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 26(11), pp.1299-1310. DOI: https://doi.org/10.2514/3.10041

Hassan, T., Islam, M.T., Rahman, M.M., Ali, A.R.I. and Al Ziyan, A., 2022. Evaluation of different turbulence models at low reynolds number for the flow over symmetric and cambered airfoils. Journal of Engineering Advancements, 3(01), pp.12-22. DOI: https://doi.org/10.38032/jea.2022.01.003

Schnerr, G.H. and Sauer, J., 2001, May. Physical and numerical modeling of unsteady cavitation dynamics. In Fourth international conference on multiphase flow (Vol. 1). New Orleans, LO, USA: ICMF New Orleans.

Ffowcs Williams, J.E. and Hawkings, D.L., 1969. Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264(1151), pp.321-342. DOI: https://doi.org/10.1098/rsta.1969.0031

Brentner, K.S. and Farassat, F., 2003. Modeling aerodynamically generated sound of helicopter rotors. Progress in Aerospace Sciences, 39(2-3), pp.83-120. DOI: https://doi.org/10.1016/S0376-0421(02)00068-4

Budynas, Richard Gordon and Nisbett JK and others, 2011. Shigley’s mechanical engineering design. McGraw-Hill, New York.

Hayati, A.N., Hashemi, S.M. and Shams, M., 2012. A study on the effect of the rake angle on the performance of marine propellers. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226(4), pp.940-955. DOI: https://doi.org/10.1177/0954406211418588

Helal, M.M., Ahmed, T.M., Banawan, A.A. and Kotb, M.A., 2018. Numerical prediction of sheet cavitation on marine propellers using CFD simulation with transition-sensitive turbulence model. Alexandria Engineering Journal, 57(4), pp.3805-3815. DOI: https://doi.org/10.1016/j.aej.2018.03.008

Seli, H., Awang, M., Ismail, A.I.M., Rachman, E. and Ahmad, Z.A., 2013. Evaluation of properties and FEM model of the friction welded mild steel-Al6061-alumina. Materials Research, 16, pp.453-467. DOI: https://doi.org/10.1590/S1516-14392012005000178

ASM Material Data Sheet, Available at: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2024T4. (Accessed on 12th November 2022).

Uddin, M.M., Hossen, M.P., Jahan, M.M. and Islam, M.I., 2021, February. Structural analysis of composite propeller of ship using FEM. In AIP Conference Proceedings (Vol. 2324, No. 1, p. 030001). AIP Publishing LLC. DOI: https://doi.org/10.1063/5.0037760

Sharma, S.D., Mani, K. and Arakeri, V.H., 1990. Cavitation noise studies on marine propellers. Journal of Sound and Vibration, 138(2), pp.255-283. DOI: https://doi.org/10.1016/0022-460X(90)90542-8

Downloads

Published

26-03-2023
  • Abstract view199

How to Cite

Alam, M. I., Adib, A. R., Al Rifat, A., Hassan, T., & Rahman, M. M. (2023). Numerical Analysis on Cavitation-noise and Fluid-structure Interaction of AU-Outline GAWN Series and B-Series Marine Propellers. Journal of Engineering Advancements, 4(01), 25–34. https://doi.org/10.38032/jea.2023.01.005
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Research Articles
فروشگاه اینترنتی صندلی اداری