An Experimental Study on Mechanical Properties of Stir Casted Hybrid Al Metal Matrix Composite Reinforced with Al2O3 and TiO2
DOI:
https://doi.org/10.38032/jea.2025.01.001Keywords:
Metal Matrix Composites, Aluminum, Stir Casting, Microstructure, Mechanical PropertiesAbstract
This study investigates the impact of incorporating aluminum oxide (Al2O3) and titanium dioxide (TiO2) into an aluminum matrix. The primary objectives of this research were to create composite materials with a high strength-to-weight ratio and to assess their mechanical properties. The experiment involved the homogenous dispersion of 99.9% pure aluminum powder with Al2O3 and TiO2 reinforcements. Three samples were produced by the stir casting method, utilizing finely ground aluminum powder mixed with an equal proportion of Al2O3 and TiO2 (2.5% Al2O3 + 2.5% TiO2, 5% Al2O3 + 5% TiO2, 7.5% Al2O3 + 7.5% TiO2). The morphological distribution of reinforcements was determined through structural analysis utilizing a scanning electron microscope (SEM). Tests were undertaken to examine the mechanical qualities of hardness, tensile strength and impact strength. The addition of reinforcement to the aluminum matrix leads to a reduction in hardness. The highest tensile strength observed in the sample reinforced with a combination of 5% Al2O3 and 5% TiO2. Conversely, the incorporation of reinforcements was observed to enhance the impact strength. The current hybrid aluminum metal matrix composite is considered valuable for diverse engineering applications that require a high strength-to-weight ratio.
References
Ramanathan, A., Krishnan, P.K. and Muraliraja, R., 2019. A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. Journal of Manufacturing processes, 42, pp.213-245. DOI: https://doi.org/10.1016/j.jmapro.2019.04.017
Sharma, A.K., Bhandari, R., Aherwar, A. and Rimašauskienė, R., 2020. Matrix materials used in composites: A comprehensive study. Materials Today: Proceedings, 21, pp.1559-1562. DOI: https://doi.org/10.1016/j.matpr.2019.11.086
Ramnath, B.V., Elanchezhian, C., Annamalai, R.M., Aravind, S., Atreya, T.S.A., Vignesh, V. and Subramanian, C., 2014. Aluminium metal matrix composites–a review. Rev. Adv. Mater. Sci, 38(5), pp.55-60.
McDanels, D.L., 1985. Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement. Metallurgical transactions A, 16, pp.1105-1115. DOI: https://doi.org/10.1007/BF02811679
Balaraj, V., Kori, N., Nagaral, M. and Auradi, V., 2021. Microstructural evolution and mechanical characterization of micro Al2O3 particles reinforced Al6061 alloy metal composites. Materials Today: Proceedings, 47, pp.5959-5965. DOI: https://doi.org/10.1016/j.matpr.2021.04.500
Sajjadi, S.A., Ezatpour, H.R. and Beygi, H., 2011. Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Materials Science and Engineering: A, 528(29-30), pp.8765-8771. DOI: https://doi.org/10.1016/j.msea.2011.08.052
Krishna, M.V. and Xavior, A.M., 2014. An investigation on the mechanical properties of hybrid metal matrix composites. Procedia Engineering, 97, pp.918-924. DOI: https://doi.org/10.1016/j.proeng.2014.12.367
Saravanan, S.D. and Kumar, M.S., 2013. Effect of mechanical properties on rice husk ash reinforced aluminum alloy (AlSi10Mg) matrix composites. Procedia Engineering, 64, pp.1505-1513. DOI: https://doi.org/10.1016/j.proeng.2013.09.232
Ahmadifard, S., Kazemi, S. and Heidarpour, A., 2018. Production and characterization of A5083–Al2O3–TiO2 hybrid surface nanocomposite by friction stir processing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(4), pp.287-293. DOI: https://doi.org/10.1177/1464420715623977
Yu, P., Mei, Z. and Tjong, S.C., 2005. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles. Materials Chemistry and Physics, 93(1), pp.109-116. DOI: https://doi.org/10.1016/j.matchemphys.2005.02.028
Ahamad, N., Mohammad, A., Sadasivuni, K.K. and Gupta, P., 2020. Phase, microstructure and tensile strength of Al–Al2O3–C hybrid metal matrix composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(13), pp.2681-2693. DOI: https://doi.org/10.1177/0954406220909846
Bandil, K., Vashisth, H., Kumar, S., Verma, L., Jamwal, A., Kumar, D., Singh, N., Sadasivuni, K.K. and Gupta, P., 2019. Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite. Journal of Composite Materials, 53(28-30), pp.4215-4223. DOI: https://doi.org/10.1177/0021998319856679
Lokesh, N., Manoj, B., Srikanth, K., Ramanayya, P.K.V. and Rao, M.V., 2018. Mechanical characterization of stir cast Al 6063 TiO2-Cu reinforced hybrid metal matrix composites. Materials Today: Proceedings, 5(9), pp.18383-18392. DOI: https://doi.org/10.1016/j.matpr.2018.06.178
Abbass, M.K. and Fouad, M.J., 2015. Wear characterization of aluminum matrix hybrid composites reinforced with nanoparticles of Al2O3 and TiO2. Journal of Materials Science and Engineering B, 5(9-10), pp.361-371. DOI: https://doi.org/10.17265/2161-6221/2015.9-10.004
Ahamad, N., Mohammad, A., Sadasivuni, K.K. and Gupta, P., 2021. Wear, optimization and surface analysis of Al-Al2O3-TiO2 hybrid metal matrix composites. Proceedings of the institution of mechanical engineers, Part J: Journal of Engineering Tribology, 235(1), pp.93-102. DOI: https://doi.org/10.1177/1350650120970432
El Mahallawi, I., Shash, Y., Rashad, R.M., Abdelaziz, M.H., Mayer, J. and Schwedt, A., 2014. Hardness and wear behaviour of semi-solid cast A390 alloy reinforced with Al 2 O 3 and TiO 2 nanoparticles. Arabian Journal for Science and Engineering, 39, pp.5171-5184. DOI: https://doi.org/10.1007/s13369-014-1179-3
Hamid, A.A., Ghosh, P.K., Jain, S. and Ray, S., 2008. The influence of porosity and particles content on dry sliding wear of cast in situ Al (Ti)–Al2O3 (TiO2) composite. Wear, 265(1-2), pp.14-26. DOI: https://doi.org/10.1016/j.wear.2007.08.018
Zhang, Q., Xiao, B.L., Wang, Q.Z. and Ma, Z.Y., 2011. In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system. Materials Letters, 65(13), pp.2070-2072. DOI: https://doi.org/10.1016/j.matlet.2011.04.030
Shuvho, M.B.A., Chowdhury, M.A., Kchaou, M., Roy, B.K., Rahman, A. and Islam, M.A., 2020. Surface characterization and mechanical behavior of aluminum based metal matrix composite reinforced with nano Al2O3, SiC, TiO2 particles. Chemical Data Collections, 28, p.100442. DOI: https://doi.org/10.1016/j.cdc.2020.100442
El-Mahallawi, I.S., Shash, A.Y. and Amer, A.E., 2015. Nanoreinforced cast Al-Si alloys with Al2O3, TiO2 and ZrO2 nanoparticles. Metals, 5(2), pp.802-821. DOI: https://doi.org/10.3390/met5020802
Li, C., Feng, X., Shen, Y. and Chen, W., 2016. Preparation of Al2O3/TiO2 particle-reinforced copper through plasma spraying and friction stir processing. Materials & Design, 90, pp.922-930. DOI: https://doi.org/10.1016/j.matdes.2015.11.047
Long, H.E., Tan, Y.F., Hua, T.A.N., Zhou, C.H. and Li, G.A.O., 2013. Tribological properties of nanostructured Al2O3-40% TiO2 multiphase ceramic particles reinforced Ni-based alloy composite coatings. Transactions of Nonferrous Metals Society of China, 23(9), pp.2618-2627. DOI: https://doi.org/10.1016/S1003-6326(13)62776-4
Nayak, R.K., Mahato, K.K., Routara, B.C. and Ray, B.C., 2016. Evaluation of mechanical properties of Al2O3 and TiO2 nano filled enhanced glass fiber reinforced polymer composites. Journal of Applied Polymer Science, 133(47). DOI: https://doi.org/10.1002/app.44274
Jamwal, A., Prakash, P., Kumar, D., Singh, N., Sadasivuni, K.K., Harshit, K., Gupta, S. and Gupta, P., 2019. Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC–graphite hybrid composites. Journal of Composite Materials, 53(18), pp.2545-2553. DOI: https://doi.org/10.1177/0021998319832961
Paulraj, D., Jeyakumar, P.D., Rajamurugan, G. and Krishnasamy, P., 2021. Influence of nano TiO2/micro (SiC/B4C) reinforcement on the mechanical, wear and corrosion behaviour of A356 metal matrix composite. Archives of Metallurgy and Materials, 66(3), pp.871-880. DOI: https://doi.org/10.24425/amm.2021.136392
Kanthavel, K., Sumesh, K.R. and Saravanakumar, P., 2016. Study of tribological properties on Al/Al2O3/MoS2 hybrid composite processed by powder metallurgy. Alexandria Engineering Journal, 55(1), pp.13-17. DOI: https://doi.org/10.1016/j.aej.2016.01.024
Luo, T., Wei, X., Zhao, H., Cai, G. and Zheng, X., 2014. Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives. Ceramics International, 40(7), pp.10103-10109. DOI: https://doi.org/10.1016/j.ceramint.2014.03.181
Yılmaz, R., Kurt, A.O., Demir, A. and Tatlı, Z., 2007. Effects of TiO2 on the mechanical properties of the Al2O3–TiO2 plasma sprayed coating. Journal of the European Ceramic Society, 27(2-3), pp.1319-1323. DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.04.099
Oddone, V., Boerner, B. and Reich, S., 2017. Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity. Science and Technology of advanced MaTerialS, 18(1), pp.180-186. DOI: https://doi.org/10.1080/14686996.2017.1286222
Nayim, S.T.I., Hasan, M.Z., Seth, P.P., Gupta, P., Thakur, S., Kumar, D. and Jamwal, A., 2020. Effect of CNT and TiC hybrid reinforcement on the micro-mechano-tribo behaviour of aluminium matrix composites. Materials Today: Proceedings, 21, pp.1421-1424. DOI: https://doi.org/10.1016/j.matpr.2019.08.203
Ahamad, N., Mohammad, A., Sadasivuni, K.K. and Gupta, P., 2020. Structural and mechanical characterization of stir cast Al–Al2O3–TiO2 hybrid metal matrix composites. Journal of Composite Materials, 54(21), pp.2985-2997. DOI: https://doi.org/10.1177/0021998320906207
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Md. Imtiaj Hossain, Minhaz Ahmed, Tafsirul Hassan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Most read articles by the same author(s)
- Tafsirul Hassan, Md. Tazul Islam, Md. Mizanur Rahman, Abu Raihan Ibna Ali, Asif Al Ziyan, Evaluation of Different Turbulence Models at Low Reynolds Number for the Flow over Symmetric and Cambered Airfoils , Journal of Engineering Advancements: Vol. 3 No. 01 (2022)
- Md. Iftekharul Alam, Abidur Rahman Adib, Abdullah Al Rifat, Tafsirul Hassan, Md. Mizanur Rahman, Numerical Analysis on Cavitation-noise and Fluid-structure Interaction of AU-Outline GAWN Series and B-Series Marine Propellers , Journal of Engineering Advancements: Vol. 4 No. 01 (2023)
- Abu Raihan Ibna Ali, Tafsirul Hassan, Bodius Salam, Tania Akter, Heat Transfer Performance and Flow Dynamics of Al2O3/Water Nanofluid in Turbulent Regime , Journal of Engineering Advancements: Vol. 5 No. 02 (2024)