Fabrication and Characterization of α-Fe2O3 Nanoparticles Dispersed Epoxy Nanocomposites


  • Muhammad Abdullah Al Mamun Department of Materials Science and Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh
  • Md. Abdus Sabur 1Department of Materials Science and Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh
  • Md. Abdul Gafur Institute of Pilot Plant and Process Development Centre, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka-1205, Bangladesh
  • Hrithita Aftab Department of Materials Science and Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh
  • G.M. Shafiur Rahman Department of Materials Science and Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh




α-Fe2O3 Nanoparticles, Nanocomposites, Mechanical Properties, Epoxy Resin, Thermogravimetric Analysis (TGA)


Hematite(α-Fe2O3) nanoparticles were synthesized by sol-gel process and further mixed with epoxy resin to obtain the nanocomposites. X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) analysis revealed that α-Fe2O3 nanoparticles have an average diameter of about 30 nm, also illustrated the crystal structure and morphology of the nanomaterials. Fourier-Transform Infrared spectroscopy (FTIR) showed the functional groups that were present in α-Fe2O3 nanoparticles, neat epoxy andα-Fe2O3/epoxy nanocomposites. Vibrating Sample Magnetometer (VSM) analysis exhibits the magnetic hysteresis curve and revealed that α-Fe2O3 nanoparticles were superparamagnetic. Tensile testing was performed to obtain the tensile strength, yield strength, elongation, young modulus and required energy to deform the materials. Vickers micro-hardness test showed the surface hardness of the nanocomposites. Flexural strength also measured, which indicate the strength of nanocomposites against bending. Thermogravimetric Analysis (TGA) measurement showed the thermal properties of α-Fe2O3 nanoparticles and its influence into the epoxy matrix. UV-Vis spectroscopy was performed to obtain the optical band gap energy of the nanocomposites.  DC-resistivity measurements showed a significant influence of α-Fe2O3 nanoparticles on the dc-electrical properties of the epoxy matrix.


Huynh, W.U., Dittmer, J.J. and Alivisatos, A.P., 2002. Hybrid nanorod-polymer solar cells. Science, 295(5564), pp.2425-2427. DOI: https://doi.org/10.1126/science.1069156

Lu, Y., Yang, Y., Sellinger, A., Lu, M., Huang, J., Fan, H., Haddad, R., Lopez, G., Burns, A.R., Sasaki, D.Y. and Shelnutt, J., 2001. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature, 410(6831), pp.913-917. DOI: https://doi.org/10.1038/35073544

Wang, G.F., Tao, X.M. and Wang, R.X., 2008. Flexible organic light-emitting diodes with a polymeric nanocomposite anode. Nanotechnology, 19(14), p.145201. DOI: https://doi.org/10.1088/0957-4484/19/14/145201

McDonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J., Levina, L. and Sargent, E.H., 2005. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 4(2), pp.138-142. DOI: https://doi.org/10.1038/nmat1299

Podsiadlo, P., Kaushik, A.K., Arruda, E.M., Waas, A.M., Shim, B.S., Xu, J., Nandivada, H., Pumplin, B.G., Lahann, J., Ramamoorthy, A. and Kotov, N.A., 2007. Ultrastrong and stiff layered polymer nanocomposites. Science, 318(5847), pp.80-83. DOI: https://doi.org/10.1126/science.1143176

Wang, L., Yoon, M.H., Lu, G., Yang, Y., Facchetti, A. and Marks, T.J., 2006. High-performance transparent inorganic–organic hybrid thin-film n-type transistors. Nature Materials, 5(11), pp.893-900. DOI: https://doi.org/10.1038/nmat1755

Shan, H., Liu, C., Liu, L., Li, S., Wang, L., Zhang, X., Bo, X. and Chi, X., 2013. Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sensors and Actuators B: Chemical, 184, pp.243-247. DOI: https://doi.org/10.1016/j.snb.2013.04.088

Sun, Y., Guo, G., Yang, B., Cai, W., Tian, Y., He, M. and Liu, Y., 2011. One-step solution synthesis of Fe2O3 nanoparticles at low temperature. Physica B: Condensed Matter, 406(4), pp.1013-1016. DOI: https://doi.org/10.1016/j.physb.2010.12.050

Fang, X.L., Chen, C., Jin, M.S., Kuang, Q., Xie, Z.X., Xie, S.Y., Huang, R.B. and Zheng, L.S., 2009. Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment. Journal of Materials Chemistry, 19(34), pp.6154-6160. DOI: https://doi.org/10.1039/b905034e

Gupta, A.K. and Gupta, M., 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26(18), pp.3995-4021. DOI: https://doi.org/10.1016/j.biomaterials.2004.10.012

Mirzaei, A., Janghorban, K., Hashemi, B., Bonavita, A., Bonyani, M., Leonardi, S.G. and Neri, G., 2015. Synthesis, characterization and gas sensing properties of Ag@ α-Fe2O3 core–shell nanocomposites. Nanomaterials, 5(2), pp.737-749.. DOI: https://doi.org/10.3390/nano5020737

Neri, G., Bonavita, A., Galvagno, S., Siciliano, P. and Capone, S., 2002. CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD. Sensors and Actuators B: Chemical, 82(1), pp.40-47. DOI: https://doi.org/10.1016/S0925-4005(01)00987-X

Mitra, S., Das, S., Mandal, K. and Chaudhuri, S., 2007. Synthesis of a α-Fe2O3 nanocrystal in its different morphological attributes: growth mechanism, optical and magnetic properties. Nanotechnology, 18(27), p.275608. DOI: https://doi.org/10.1088/0957-4484/18/27/275608

Fan, Z., Wen, X., Yang, S. and Lu, J.G., 2005. Controlled p-and n-type doping of Fe 2 O 3 nanobelt field effect transistors. Applied Physics Letters, 87(1), p.013113. DOI: https://doi.org/10.1063/1.1977203

Wagloehner, S., Reichert, D., Leon-Sorzano, D., Balle, P., Geiger, B. and Kureti, S., 2008. Kinetic modeling of the oxidation of CO on Fe2O3 catalyst in excess of O2. Journal of Catalysis, 260(2), pp.305-314.. DOI: https://doi.org/10.1016/j.jcat.2008.09.018

Pailhé, N., Wattiaux, A., Gaudon, M. and Demourgues, A., 2008. Impact of structural features on pigment properties of α-Fe2O3 haematite. Journal of Solid State Chemistry, 181(10), pp.2697-2704. DOI: https://doi.org/10.1016/j.jssc.2008.06.049

Hu, C., Gao, Z. and Yang, X., 2007. Facile synthesis of single crystalline α-Fe2O3 ellipsoidal nanoparticles and its catalytic performance for removal of carbon monoxide. Materials Chemistry and Physics, 104(2-3), pp.429-433. DOI: https://doi.org/10.1016/j.matchemphys.2007.03.040

Eivari, H.A. and Rahdar, A., 2013. Some properties of iron oxide nanoparticles synthesized in different conditions. World Appl. Program, 3(2), pp.52-55.

Bandgar, D.K., Navale, S.T., Khuspe, G.D., Pawar, S.A., Mulik, R.N. and Patil, V.B., 2014. Novel route for fabrication of nanostructured α-Fe2O3 gas sensor. Materials Science in Semiconductor Processing, 17, pp.67-73. DOI: https://doi.org/10.1016/j.mssp.2013.08.016

Ramesh, R., Ashok, K., Bhalero, G.M., Ponnusamy, S. and Muthamizhchelvan, C., 2010. Synthesis and properties of α‐Fe2O3 nanorods. Crystal Research and Technology, 45(9), pp.965-968. DOI: https://doi.org/10.1002/crat.201000140

Yan, H., Su, X., Yang, C., Wang, J. and Niu, C., 2014. Improved photocatalytic and gas sensing properties of α-Fe2O3 nanoparticles derived from β-FeOOH nanospindles. Ceramics International, 40(1), pp.1729-1733. DOI: https://doi.org/10.1016/j.ceramint.2013.07.070

Mahmoud, M.H., Hamdeh, H.H., Ho, J.C., O’shea, M.J. and Walker, J.C., 2000. Mössbauer studies of manganese ferrite fine particles processed by ball-milling. Journal of Magnetism and Magnetic Materials, 220(2-3), pp.139-146. DOI: https://doi.org/10.1016/S0304-8853(00)00484-4

Shinde, S.S., Moholkar, A.V., Kim, J.H. and Rajpure, K.Y., 2011. Structural, morphological, luminescent and electronic properties of sprayed aluminium incorporated iron oxide thin films. Surface and Coatings Technology, 205(12), pp.3567-3577. DOI: https://doi.org/10.1016/j.surfcoat.2010.12.022

Dudić, D., Marinović-Cincović, M., Nedeljković, J.M. and Djoković, V., 2008. Electrical properties of a composite comprising epoxy resin and α-hematite nanorods. Polymer, 49(18), pp.4000-4008. DOI: https://doi.org/10.1016/j.polymer.2008.07.016

Prasanna, B.P., Avadhani, D.N., Raghu, M.S. and Kumar, Y., 2017. Synthesis of polyaniline/α-Fe2O3 nanocomposite electrode material for supercapacitor applications. Materials Today Communications, 12, pp.72-78. DOI: https://doi.org/10.1016/j.mtcomm.2017.07.002

Mirzaei, A., Janghorban, K., Hashemi, B., Hosseini, S.R., Bonyani, M., Leonardi, S.G., Bonavita, A. and Neri, G., 2016. Synthesis and characterization of mesoporous α-Fe2O3 nanoparticles and investigation of electrical properties of fabricated thick films. Processing and Application of Ceramics, 10(4), pp.209-217. DOI: https://doi.org/10.2298/PAC1604209M

Tang, C. and Liu, W., 2010. Preparation of dual-curable polysiloxane and the properties of its cured films with epoxy resin. Journal of Plastic Film & Sheeting, 26(3), pp.241-257. DOI: https://doi.org/10.1177/8756087910387241

Voo, R., Mariatti, M. and Sim, L.C., 2011. Properties of epoxy nanocomposite thin films prepared by spin coating technique. Journal of Plastic Film & Sheeting, 27(4), pp.331-346. DOI: https://doi.org/10.1177/8756087911419745

Kanapitsas, A., Tsonos, C., Psarras, G.C. and Kripotou, S., 2016. Barium ferrite/epoxy resin nanocomposite system: Fabrication, dielectric, magnetic and hydration studies. Express Polymer Letters, 10(3), p.227. DOI: https://doi.org/10.3144/expresspolymlett.2016.21

Gazderazi, M. and Jamshidi, M., 2016. Hybridizing MWCNT with nano metal oxides and TiO2 in epoxy composites: Influence on mechanical and thermal performances. Journal of Applied Polymer Science, 133(34). DOI: https://doi.org/10.1002/app.43834

Bhadra, S., Khastgir, D., Singha, N.K. and Lee, J.H., 2009. Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 34(8), pp.783-810. DOI: https://doi.org/10.1016/j.progpolymsci.2009.04.003

Katsoulis, C., Kandare, E. and Kandola, B.K., 2011. The effect of nanoparticles on structural morphology, thermal and flammability properties of two epoxy resins with different functionalities. Polymer Degradation and Stability, 96(4), pp.529-540. DOI: https://doi.org/10.1016/j.polymdegradstab.2011.01.002

Wang, Z., Volinsky, A.A. and Gallant, N.D., 2014. Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom‐built compression instrument. Journal of Applied Polymer Science, 131(22). DOI: https://doi.org/10.1002/app.41050

Mohammadzadehmoghadam, S., Dong, Y. and Jeffery Davies, I., 2015. Recent progress in electrospun nanofibers: reinforcement effect and mechanical performance. Journal of Polymer Science Part B: Polymer Physics, 53(17), pp.1171-1212. DOI: https://doi.org/10.1002/polb.23762

Bagheri, S., Chandrappa, K. and Hamid, S.B.A., 2013. Generation of hematite nanoparticles via sol-gel method. Research Journal of Chemical Sciences, 3(7), pp.62-68. DOI: https://doi.org/10.1155/2013/848205

He, C., Sasaki, T., Shimizu, Y. and Koshizaki, N., 2008. Synthesis of ZnO nanoparticles using nanosecond pulsed laser ablation in aqueous media and their self-assembly towards spindle-like ZnO aggregates. Applied Surface Science, 254(7), pp.2196-2202. DOI: https://doi.org/10.1016/j.apsusc.2007.09.007

Chicot, D., Mendoza, J., Zaoui, A., Louis, G., Lepingle, V., Roudet, F. and Lesage, J., 2011. Mechanical properties of magnetite (Fe3O4), hematite (α-Fe2O3) and goethite (α-FeO• OH) by instrumented indentation and molecular dynamics analysis. Materials Chemistry and Physics, 129(3), pp.862-870. DOI: https://doi.org/10.1016/j.matchemphys.2011.05.056

Siva Sankari, S., Murugan, N., Sivaraj, S., 2014. Effect of Filler Materials on the Mechanical and Thermal Properties of Epoxy Resin. AMM 592–594, 206–210. DOI: https://doi.org/10.4028/www.scientific.net/AMM.592-594.206

Guo, L., Shen, X., Meng, X. and Feng, Y., 2010. Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. Journal of Alloys and Compounds, 490(1-2), pp.301-306. DOI: https://doi.org/10.1016/j.jallcom.2009.09.182

Wang, Z., Liu, X., Lv, M., Chai, P., Liu, Y. and Meng, J., 2008. Preparation of ferrite MFe2O4 (M= Co, Ni) ribbons with nanoporous structure and their magnetic properties. The Journal of Physical Chemistry B, 112(36), pp.11292-11297. DOI: https://doi.org/10.1021/jp804178w

Sivakumar, P., Ramesh, R., Ramanand, A., Ponnusamy, S. and Muthamizhchelvan, C., 2011. Synthesis and characterization of NiFe2O4 nanosheet via polymer assisted co-precipitation method. Materials Letters, 65(3), pp.483-485. DOI: https://doi.org/10.1016/j.matlet.2010.10.056

Zhang, C.Y., Shen, X.Q., Zhou, J.X., Jing, M.X. and Cao, K., 2007. Preparation of spinel ferrite NiFe2O4 fibres by organic gel-thermal decomposition process. Journal of Sol-gel Science and Technology, 42(1), pp.95-100. DOI: https://doi.org/10.1007/s10971-006-1515-5

Rand, B.P., Peumans, P. and Forrest, S.R., 2004. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. Journal of Applied Physics, 96(12), pp.7519-7526. DOI: https://doi.org/10.1063/1.1812589

Schaadt, D.M., Feng, B. and Yu, E.T., 2005. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Applied Physics Letters, 86(6), p.063106. DOI: https://doi.org/10.1063/1.1855423

Morfa, A.J., Rowlen, K.L., Reilly III, T.H., Romero, M.J. and van de Lagemaat, J., 2008. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Applied Physics Letters, 92(1), p.013504. DOI: https://doi.org/10.1063/1.2823578

Jestl, M., Maran, I., Köck, A., Beinstingl, W. and Gornik, E., 1989. Polarization-sensitive surface plasmon Schottky detectors. Optics letters, 14(14), pp.719-721. DOI: https://doi.org/10.1364/OL.14.000719

Ogwu, A.A., Darma, T.H. and Bouquerel, E., 2007. Electrical resistivity of copper oxide thin films prepared by reactive magnetron sputtering. Journal of Achievements in Materials and Manufacturing Engineering, 24(1), pp.172-177.

Praveena, S.D., Ravindrachary, V. and Bhajantri, R.F., 2016. Dopant‐induced microstructural, optical, and electrical properties of TiO2/PVA composite. Polymer Composites, 37(4), pp.987-997. DOI: https://doi.org/10.1002/pc.23258

Khairy, M., 2014. Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite. Synthetic metals, 189, pp.34-41. DOI: https://doi.org/10.1016/j.synthmet.2013.12.022



  • Abstract view330

How to Cite

Mamun, M. A. A., Sabur , M. A. ., Gafur, M. A. ., Aftab, H. ., & Rahman, G. S. . (2021). Fabrication and Characterization of α-Fe2O3 Nanoparticles Dispersed Epoxy Nanocomposites. Journal of Engineering Advancements, 2(02), 95–103. https://doi.org/10.38032/jea.2021.02.005
صندلی اداری سرور مجازی ایران Decentralized Exchange



Research Articles

Most read articles by the same author(s)

فروشگاه اینترنتی صندلی اداری