Morphogenesis of Silicovanadate Glasses: Investigation of Physical Properties

Authors

  • Md. Moinul Islam Department of Physics, University of Rajshahi, Rajshahi–6205, Bangladesh
  • Md. Abdur Rashid Department of Physics, University of Rajshahi, Rajshahi–6205, Bangladesh
  • Md. Parvez Ahamed Department of Physics, University of Rajshahi, Rajshahi–6205, Bangladesh
  • Md. Emran Hossain Physics Discipline, University of Khulna, Khulna–9208, Bangladesh
  • M. Rafiqul Ahsan Department of Physics, University of Rajshahi, Rajshahi–6205, Bangladesh
  • M. Golam Mortuza Department of Physics, University of Rajshahi, Rajshahi–6205, Bangladesh
  • Mirza Humaun Kabir Rubel Department of Materials Science and Engineering, University of Rajshahi, Rajshahi–6205, Bangladesh

DOI:

https://doi.org/10.38032/jea.2021.02.003

Keywords:

Si/V-based glass, FTIR, X-ray diffraction, DTA, pH, Current-Voltage characteristics, Electrical resistivity

Abstract

In this article, we demonstrate the synthesis and various characterizations of silicovanadate glasses of xSiO2 (100-x)V2O5 for x = (10-50) mol%, glasses which are prepared by the melt quenching method. FTIR spectra analysis confirms dominant chemical bonds among silicon, vanadium, and oxygen elements as expected. The assigned chemical bonds are Si-O-Si, O-Si-O, V-O-V, V=O, Si-O-V, O-H from FTIR spectra. The IR spectra of all glass specimens were baseline corrected and deconvoluted to distinct peaks of chemical bonds in overlapped Gaussians with employing computer program. The chemical bond's position shifted and affected due to the addition of vanadium pentaoxide by the heat treatment process. The X-ray diffractions (XRD) patterns of glass samples exhibit partial crystalline nature for 10S90V and 50S50V that is influenced by high-temperature application. The differential thermal analysis (DTA) of base and heat-treated specimen determines the glass transition (Tg), crystallization, and liquidus temperature with prominent exothermic and endothermic reactions. It is seen that the pH of the glass specimens abruptly changes due to the surface effect of V2O5 while bulk effects become robust after about 30 minutes. The measured hardness of three glass samples shows high HV-values and a slight linear increment is observed for higher V2O5 contents. The current-voltage (I-V) characteristic connected to the electrical conductivity of the glass specimen (20S80V) shows a relatively higher and non-linear trend of conductivity which reveals the behavior of a semiconductor. Moreover, temperature-dependent electrical resistivity measurement of the same sample (20S80V) manifests the semiconducting nature up to 427 °C as well.

References

Morey, G.W., 1954. Properties of glass, Monograph series (American Chemical Society), New York, Reinhold.

Greer, A.L., 1997. Metallic glasses. Current Opinion in Solid State and Materials Science, 2(4), pp.412-416. DOI: https://doi.org/10.1016/S1359-0286(97)80081-2

Ahsan, M.R., Uddin, M.A. and Mortuza, M.G., 2005. Infrared study of the effect of P2O5 in the structure of lead silicate glasses.

Seafriends.org.nz., 1994, Retrieved 2012, Mining the sea sand. Website: http://www.seafriends.org.nz/oceano/seasand.htm

Sharma, B.K., 1991. Industrial chemistry. Krishna Prakashan Media.

ElBatal, F.H., Marzouk, S.Y., Nada, N. and Desouky, S.M., 2007. Gamma-ray interaction with copper-doped bismuth–borate glasses. Physica B: Condensed Matter, 391(1), pp.88-97. DOI: https://doi.org/10.1016/j.physb.2006.09.001

Pönitzsch, A., Nofz, M., Wondraczek, L. and Deubener, J., 2016. Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range. Journal of Non-Crystalline Solids, 434, pp.1-12. DOI: https://doi.org/10.1016/j.jnoncrysol.2015.12.002

Sindhu, S., Sanghi, S., Agarwal, A., Kishore, N. and Seth, V.P., 2007. Effect of V2O5 on structure and electrical properties of zinc borate glasses. Journal of Alloys and Compounds, 428(1-2), pp.206-213. DOI: https://doi.org/10.1016/j.jallcom.2006.01.110

Singh, G.P., Kaur, P., Kaur, S. and Singh, D.P., 2011. Role of V2O5 in structural properties of V2O5-MnO2-PbO-B2O3 glasses. Materials Physics and Mechanics, 12, pp.58-63.

Seshasayee, M. and Muruganandam, K., 1998. Molecular dynamics study of V2O5 glass. Solid State Communications, 105(4), pp.243-246.

Mott, N.F., 1968. Conduction in glasses containing transition metal ions. Journal of Non-Crystalline Solids, 1(1), pp.1-17. DOI: https://doi.org/10.1016/0022-3093(68)90002-1

John, V., 1992. Introduction to engineering materials. 3rd Edition, Macmillan Education Ltd. DOI: https://doi.org/10.1007/978-1-349-21976-6

Dekker, A. J., 1995. Solid-state physics, Macmillan India Limited, New Delhi, 110064.

Cicconi, M.R., Lu, Z., Uesbeck, T., van Wüllen, L., Brauer, D.S. and De Ligny, D., 2020. Influence of Vanadium on optical and mechanical properties of aluminosilicate glasses. Frontiers in Materials, 7, p.161. DOI: https://doi.org/10.3389/fmats.2020.00161

Lewis, C.E., 1959. The biological effects of vanadium: II. The signs and symptoms of occupational vanadium exposure. Journal of Occupational and Environmental Medicine, 1(10), p.572.

Kumar, V., Pandey, O.P. and Singh, K., 2010. Structural and optical properties of barium borosilicate glasses. Physica B: Condensed Matter, 405(1), pp.204-207. DOI: https://doi.org/10.1016/j.physb.2009.08.055

Limbach, R., Rodrigues, B.P. and Wondraczek, L., 2014. Strain-rate sensitivity of glasses. Journal of Non-crystalline Solids, 404, pp.124-134. DOI: https://doi.org/10.1016/j.jnoncrysol.2014.08.023

Stevensson, B. and Edén, M., 2013. Structural rationalization of the microhardness trends of rare-earth aluminosilicate glasses: interplay between the RE3+ field-strength and the aluminum coordinations. Journal of Non-crystalline Solids, 378, pp.163-167. DOI: https://doi.org/10.1016/j.jnoncrysol.2013.06.013

Becher, P.F., Waters, S.B., Westmoreland, C.G. and Riester, L., 2002. Compositional effects on the properties of Si‐Al‐RE‐based oxynitride glasses (RE= La, Nd, Gd, Y, or Lu). Journal of the American Ceramic Society, 85(4), pp.897-902. DOI: https://doi.org/10.1111/j.1151-2916.2002.tb00189.x

Rouxel, T., 2007. Elastic properties and short‐to medium‐range order in glasses. Journal of the American Ceramic Society, 90(10), pp.3019-3039. DOI: https://doi.org/10.1111/j.1551-2916.2007.01945.x

Smedskjaer, M.M., Jensen, M. and Yue, Y., 2010. Effect of thermal history and chemical composition on hardness of silicate glasses. Journal of Non-crystalline Solids, 356(18-19), pp.893-897. DOI: https://doi.org/10.1016/j.jnoncrysol.2009.12.030

Zheng, Q., Potuzak, M., Mauro, J.C., Smedskjaer, M.M., Youngman, R.E. and Yue, Y., 2012. Composition–structure–property relationships in boroaluminosilicate glasses. Journal of Non-crystalline Solids, 358(6-7), pp.993-1002. DOI: https://doi.org/10.1016/j.jnoncrysol.2012.01.030

Seshasayee, M. and Muruganandam, K., 1998. Molecular dynamics study of V2O5 glass. Solid State Communications, 105(4), pp.243-246. DOI: https://doi.org/10.1016/S0038-1098(97)10106-5

Kubuki, S., Matsuda, K., Akiyama, K., Homonnay, Z., Sinkó, K., Kuzmann, E. and Nishida, T., 2013. Enhancement of electrical conductivity and chemical durability of 20R2O• 10Fe2O3• xWO3•(70− x) V2O5 glass (R= Na, K) caused by structural relaxation. Journal of Non-crystalline Solids, 378, pp.227-233. DOI: https://doi.org/10.1016/j.jnoncrysol.2013.07.012

Ghosh, A. and Chakravorty, D., 1993. Electrical conduction in some sol-gel silicate glasses. Physical Review B, 48(8), p.5167. DOI: https://doi.org/10.1103/PhysRevB.48.5167

Ghosh, A., 1990. Ac conduction in iron bismuthate glassy semiconductors. Physical Review B, 42(2), p.1388. DOI: https://doi.org/10.1103/PhysRevB.42.1388

Dutta, D. and Ghosh, A., 2005. Dynamics of Ag+ ions in binary tellurite glasses. Physical Review B, 72(2), p.024201. DOI: https://doi.org/10.1103/PhysRevB.72.024201

Striepe, S., Da, N., Deubener, J. and Wondraczek, L., 2012. Micromechanical properties of (Na, Zn)-sulfophosphate glasses. Journal of Non-crystalline Solids, 358(6-7), pp.1032-1037. DOI: https://doi.org/10.1016/j.jnoncrysol.2012.01.045

Striepe, S., Smedskjaer, M.M., Deubener, J., Bauer, U., Behrens, H., Potuzak, M., Youngman, R.E., Mauro, J.C. and Yue, Y., 2013. Elastic and micromechanical properties of isostatically compressed soda–lime–borate glasses. Journal of Non-crystalline Solids, 364, pp.44-52. DOI: https://doi.org/10.1016/j.jnoncrysol.2013.01.009

Krishna Mohan, N., Sahaya Baskaran, G. and Veeraiah, N., 2006. Dielectric and spectroscopic properties of PbO–Nb2O5–P2O5: V2O5 glass system. Physica Status Solidi (a), 203(8), pp.2083-2102. DOI: https://doi.org/10.1002/pssa.200622093

Subbalakshmi, P., Sastry, P.S. and Veeraiah, N., 2001. Dielectric relaxation and ac conduction phenomena in PbO–WO3–P2O5 glass system. Physics and Chemistry of Glasses, 42(4-5), pp.307-314.

Iordanova, R., Dimitrov, V., Dimitriev, Y. and Klissurski, D., 1994. Glass formation and structure of glasses in the V2O5- MoO3- Bi2O3 system. Journal of Non-crystalline Solids, 180(1), pp.58-65. DOI: https://doi.org/10.1016/0022-3093(94)90397-2

Iordanova, R., Dimitriev, Y., Dimitrov, V., Kassabov, S. and Klissurski, D., 1996. Glass formation and structure in the V2O5- Bi2O3- Fe2O3 glasses. Journal of Non-crystalline Solids, 204(2), pp.141-150. DOI: https://doi.org/10.1016/S0022-3093(96)00416-4

Merzbacher, C.I. and White, W.B., 1991. The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy. Journal of Non-Crystalline Solids, 130(1), pp.18-34. DOI: https://doi.org/10.1016/0022-3093(91)90152-V

Wan, J., Cheng, J. and Lu, P., 2008. The coordination state of B and Al of borosilicate glass by IR spectra. Journal of Wuhan University of Technology-Mater. Sci. Ed., 23(3), pp.419-421. DOI: https://doi.org/10.1007/s11595-007-3419-9

Kohli, J.T., Condrate, R.A. and Shelby, J.R., 1993. Raman and infrared spectra of rare earth aluminosilicate glasses. Physics and Chemistry of Glasses, 34(3), pp.81-87.

Hayri, E.A., Greenblatt, M., Bruna, P. and Gerhardt, R., 1989. Na2O- P2O5- SiO2 gels: Preparation and characterization. Journal of Non-crystalline Solids, 111(2-3), pp.167-172. DOI: https://doi.org/10.1016/0022-3093(89)90277-9

Khalifa, F.A., El Hadi, Z.A., El-Keshen, A.A. and Moustaffa, F.A., 1996. Synthesis and infrared spectra of high lead silicate glasses with di-, tri-or tetravalent cations: A structure correlation. Indian Journal of Pure & Applied Physics, 34(4), pp.201-210.

Rada, S., Neumann, M. and Culea, E., 2010. Experimental and theoretical investigations on the structure of the lead–vanadate–tellurate unconventional glasses. Solid State Ionics, 181(25-26), pp.1164-1169. DOI: https://doi.org/10.1016/j.ssi.2010.06.038

Rada, S., Ristoiu, T., Rada, M., Dan, V., Coroiu, I., Barlea, M., Rusu, T. and Culea, E., 2010. Towards understanding of the photosensitive properties in lead–vanadate–tellurate unconventional glasses. Materials Research Bulletin, 45(11), pp.1598-1602. DOI: https://doi.org/10.1016/j.materresbull.2010.07.019

Rada, M., Rus, L., Rada, S., Pascuta, P., Stan, S., Dura, N., Rusu, T. and Culea, E., 2015. Role of vanadium ions on structural, optical and electrochemical properties of the vanadate-lead glasses. Journal of Non-Crystalline Solids, 414, pp.59-65. DOI: https://doi.org/10.1016/j.jnoncrysol.2015.02.009

Gandhi, Y., Venkatramaiah, N., Kumar, V.R. and Veeraiah, N., 2009. Spectroscopic and dielectric properties of ZnF2–As2O3–TeO2 glass system doped with V2O5. Physica B: Condensed Matter, 404(8-11), pp.1450-1464. DOI: https://doi.org/10.1016/j.physb.2008.12.040

El-Bata, H.A., Ghoheim, K.A., Abd El-shafi, N. and Azooz, M.A., 2000. Infrared spectra and crystallization of some Li2O-SiO2 glasses and the effect of CaO, Al2O3 and K2O additives. Indian Journal of Pure & Applied Physics, 38(2), pp.101-109.

Dimitrov, V., Dimitriev, Y. and Montenero, A., 1994. IR spectra and structure of V2O5-GeO2-Bi2O3 glasses. Journal of Non-Crystalline Solids, 180(1), pp.51-57. DOI: https://doi.org/10.1016/0022-3093(94)90396-4

Srikumar, T., Rao, C.S., Gandhi, Y., Venkatramaiah, N., Ravikumar, V. and Veeraiah, N., 2011. Microstructural, dielectric and spectroscopic properties of Li2O–Nb2O5–ZrO2–SiO2 glass system crystallized with V2O5. Journal of Physics and Chemistry of Solids, 72(3), pp.190-200. DOI: https://doi.org/10.1016/j.jpcs.2010.12.009

Rao, P.T. and Vasundhara, B., 2015. Thermal and FT-IR Properties of Semiconducting SnO 2-PbO-V 2 O 5 Glass System. New Journal of Glass and Ceramics, 5(03), p.53. DOI: https://doi.org/10.4236/njgc.2015.53007

Wang, D.S. and Pantano, C.G., 1992. Structural characterization of CaO-B2O3-Al2O3-SiO2 xerogels and glasses. Journal of Non-crystalline Solids, 142, pp.225-233. DOI: https://doi.org/10.1016/S0022-3093(05)80029-8

King, P.L., Ramsey, M.S., McMillan, P.F., and Swayze, G.A.. 2004. Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing. Mineral. Assoc. Canada Short Course Series, 33, pp.57-91.

Wong, J., 1976. Vibrational spectra of vapor-deposited binary phosphosilicate glasses. Journal of Non-Crystalline Solids, 20(1), pp.83-100. DOI: https://doi.org/10.1016/0022-3093(76)90109-5

King, P.L., Ramsey, M.S., McMillan, P.F., and Swayze, G.A.. 2004. Infrared Spectroscopy in Geochemistry, Exploration Geochemistry and Remote Sensing. Mineral. Assoc. Canada Short Course Series, 33, pp.93-133.

Ahsan, M.R. and Mortuza, M.G., 2005. Infrared spectra of xCaO (1− x− z) SiO2zP2O5 glasses. Journal of Non-Crystalline Solids, 351(27-29), pp.2333-2340. DOI: https://doi.org/10.1016/j.jnoncrysol.2005.05.030

Chen, A. and James, P.F., 1988. Amorphous phase separation and crystallization in a lithium silicate glass prepared by the sol-gel method. Journal of Non-crystalline Solids, 100(1-3), pp.353-358. DOI: https://doi.org/10.1016/0022-3093(88)90045-2

Rao, N.S., Purnima, M., Bale, S., Kumar, K.S. and Rahman, S., 2006. Spectroscopic investigations of Cu2+ in Li2O-Na2O-B2O3-Bi2O3 glasses. Bulletin of Materials Science, 29(4), pp.365-370. DOI: https://doi.org/10.1007/BF02704136

Mandal, S. and Hazra, S., 2000. Structural and physical properties of Fe2O3-doped lead vanadate glass. Journal of Materials Research, 15(1), pp.218-221. DOI: https://doi.org/10.1557/JMR.2000.0035

Higazy, A.A. and Bridge, B., 1985. Infrared spectra of the vitreous system Co 3 O 4-P 2 O 5 and their interpretation. Journal of Materials Science, 20(7), pp.2345-2358. DOI: https://doi.org/10.1007/BF00556064

Innocenzi, P., 2003. Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. Journal of Non-crystalline Solids, 316(2-3), pp.309-319. DOI: https://doi.org/10.1016/S0022-3093(02)01637-X

Lofaj, F., Satet, R., Hoffmann, M.J. and de Arellano Lopez, A.R., 2004. Thermal expansion and glass transition temperature of the rare-earth doped oxynitride glasses. Journal of the European Ceramic Society, 24(12), pp.3377-3385. DOI: https://doi.org/10.1016/j.jeurceramsoc.2003.10.012

Hanifi, A.R., Genson, A., Pomeroy, M.J. and Hampshire, S., 2012. Independent but additive effects of fluorine and nitrogen substitution on properties of a calcium aluminosilicate glass. Journal of the American Ceramic Society, 95(2), pp.600-606. DOI: https://doi.org/10.1111/j.1551-2916.2011.05001.x

Iftekhar, S., Pahari, B., Okhotnikov, K., Jaworski, A., Stevensson, B., Grins, J. and Edén, M., 2012. Properties and structures of RE2O3–Al2O3–SiO2 (RE= Y, Lu) glasses probed by molecular dynamics simulations and solid-state NMR: the roles of aluminum and rare-earth ions for dictating the microhardness. The Journal of Physical Chemistry C, 116(34), pp.18394-18406. DOI: https://doi.org/10.1021/jp302672b

Downloads

Published

21-05-2021
  • Abstract view305

How to Cite

Islam, M. M., Rashid, M. A., Ahamed, M. P., Hossain, M. E., Ahsan, M. R., Mortuza, M. G., & Rubel, M. H. K. (2021). Morphogenesis of Silicovanadate Glasses: Investigation of Physical Properties. Journal of Engineering Advancements, 2(02), 78–86. https://doi.org/10.38032/jea.2021.02.003
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Research Articles
فروشگاه اینترنتی صندلی اداری