Investigating the Performance of Different Coding Schemes for Narrowband Internet of Things (NB-IoT) Applications

Authors

  • Joseph K Afuye The Federal University of Technology
    • Formal Analysis
    • Investigation
    • Writing – Original Draft Preparation
  • Brendan C Ubochi The Federal University of Technology
    • Formal Analysis
    • Supervision
    • Writing – Review & Editing
  • Kazeem B Adedeji The Federal University of Technology
    • Conceptualization
    • Supervision
    • Formal Analysis
    • Writing – Review & Editing

DOI:

https://doi.org/10.38032/jea.2025.04.004

Keywords:

Error Correction Coding, Narrowband Internet of Things, 3GPP

Abstract

This study investigates and compares the effectiveness of five separate coding schemes for NB–IoT applications. The coding schemes investigated were Turbo, Low Density Parity Check (LDPC), Reed Solomon (RS), Turbo–RS hybrid code and LDPC–RS hybrid code. The performance of these schemes was assessed in both Additive White Gaussian Noise (AWGN) and Rayleigh fading channel conditions using Automatic Repeat Request (ARQ) method for error detection. LDPC codes employ a (1000 × 500) parity-check matrix and belief propagation for decoding, while turbo codes utilize pseudorandom data, block interleaving, and Viterbi decoding. Reed Solomon code employs generator polynomial in encoder and syndrome decoding. The five coding schemes were modelled and simulated using MATLAB software. The effectiveness of these codes was evaluated based on the Bit Error Rate (BER), Frame Error Rate (FER), and Energy Consumption. The simulation results show that all the coding schemes exhibit high energy consumption at low SNR for both channel conditions with RS consuming the most energy. In addition, the BER exhibits 10−1 value while the FER is near zero at low SNR for both channel conditions. At high SNR, the BER exhibits 10−6 value at 1.6 dB to 2.1 dB while the FER gives 10−1 value at 1 dB to 1.6 dB of SNR for both channels conditions with Turbo-RS hybrid code giving the best performance. This study indicates that Turbo-RS hybrid code is ideal for ultra-reliable, energy-efficient NB-IoT systems.

References

[1] Yu, C., Yu, L., Wu, Y., He, Y. and Lu, Q., 2017. Uplink scheduling and link adaptation for narrowband Internet of Things systems. IEEE Access, 5, pp.1724-1734. DOI: https://doi.org/10.1109/ACCESS.2017.2664418

[2] Heins, K., 2021. IoT Target Applications. In NB-IoT Use Cases and Devices: Design Guide (pp. 1-16). Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-84973-3_1

[3] Guruswami, V. and Wootters, M., 2016, June. Repairing reed-solomon codes. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing (pp. 216-226).. DOI: https://doi.org/10.1145/2897518.2897525

[4] Hoglund, A., Lin, X., Liberg, O., Behravan, A., Yavuz, E.A., Van Der Zee, M., Sui, Y., Tirronen, T., Ratilainen, A. and Eriksson, D., 2017. Overview of 3GPP release 14 enhanced NB-IoT. IEEE network, 31(6), pp.16-22. DOI: https://doi.org/10.1109/MNET.2017.1700082

[5] Migabo, E.M., Djouani, K.D. and Kurien, A.M., 2020. The narrowband Internet of Things (NB-IoT) resources management performance state of art, challenges, and opportunities. IEEE Access, 8, pp.97658-97675. DOI: https://doi.org/10.1109/ACCESS.2020.2995938

[6] Adamu, M.J., Qiang, L., Zakariyya, R.S., Nyatega, C.O., Kawuwa, H.B. and Younis, A., 2021. An efficient turbo decoding and frequency domain turbo equalization for lte based narrowband internet of things (nb-iot) systems. Sensors, 21(16), p.5351. DOI: https://doi.org/10.3390/s21165351

[7] Shao, S., Hailes, P., Wang, T.Y., Wu, J.Y., Maunder, R.G., Al-Hashimi, B.M. and Hanzo, L., 2019. Survey of turbo, LDPC, and polar decoder ASIC implementations. IEEE Communications Surveys & Tutorials, 21(3), pp.2309-2333.. DOI: https://doi.org/10.1109/COMST.2019.2893851

[8] Tahir, B., Schwarz, S. and Rupp, M., 2017, May. BER comparison between Convolutional, Turbo, LDPC, and Polar codes. In 2017 24th international conference on telecommunications (ICT) (pp. 1-7). IEEE. DOI: https://doi.org/10.1109/ICT.2017.7998249

[9] Devrari, A., Kumar, A. and Kumar, A., 2022. FPGA Performance Analysis of LDPC and Turbo Codes for Communication System. DOI: https://doi.org/10.21203/rs.3.rs-1288700/v1

[10] Sybis, M., Wesolowski, K., Jayasinghe, K., Venkatasubramanian, V. and Vukadinovic, V., 2016, September. Channel coding for ultra-reliable low-latency communication in 5G systems. In 2016 IEEE 84th vehicular technology conference (VTC-Fall) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/VTCFall.2016.7880930

[11] Berrou, C., Langlais, C. and Yu, Y., 2006. Turbo codes and turbo algorithms. Journal of Communications Software and Systems, 2(3), pp.179-190. DOI: https://doi.org/10.24138/jcomss.v2i3.282

[12] Ez-Zazi, I., Arioua, M., El Oualkadi, A. and el Assari, Y., 2017, July. Joint FEC/CRC coding scheme for energy constrained IoT devices. In Proceedings of the International Conference on Future Networks and Distributed Systems (pp. 1-8). DOI: https://doi.org/10.1145/3102304.3102329

[13] Kohan, N., Zolghadrasli, A. and Kamrani, H., 2010, November. Performance comparison of turbo equalizers with convolutional encoder/decoder and turbo encoder/decoder in wireless systems. In 2010 IEEE 12th International Conference on Communication Technology (pp. 999-1002). IEEE. DOI: https://doi.org/10.1109/ICCT.2010.5688799

[14] Mishra, P., Shukla, C.K. and Kumar, A., 2017. A Review Paper On Orthogonal Space Time Block Coded MIMO Systems with Full Rate and Full Diversity Code. International Journal of Electronics, Electrical and Computational System, 6(12).

[15] Al-Barrak, A., Al-Sherbaz, A., Kanakis, T. and Crockett, R., 2017. Enhancing BER performance limit of BCH and RS codes using multipath diversity. Computers, 6(2), p.21. DOI: https://doi.org/10.3390/computers6020021

[16] Pathak, P. and Bhatia, R., 2020, April. Channel coding for wireless communication systems: a review. In Proceedings of the International Conference on Innovative Computing & Communications (ICICC). DOI: https://doi.org/10.2139/ssrn.3565791

[17] Ali, M.S. and Kadhim, A.A., 2019. Coding schemes for energy constrained IoT devices. International Journal of Mobile Network Communications & Telematics (IJMNCT), 9(2). DOI: https://doi.org/10.2139/ssrn.3403460

[18] Yu, L., Lin, Z., Lin, S.J., Han, Y.S. and Yu, N., 2020. Fast encoding algorithms for Reed–Solomon codes with between four and seven parity symbols. IEEE Transactions on Computers, 69(5), pp.699-705. DOI: https://doi.org/10.1109/TC.2019.2963827

[19] Indoonundon, M. and Pawan Fowdur, T., 2021. Overview of the challenges and solutions for 5G channel coding schemes. Journal of Information and Telecommunication, 5(4), pp.460-483. DOI: https://doi.org/10.1080/24751839.2021.1954752

[20] Abusedra, L.F., Daeri, A.M. and Zerek, A.R., 2016, December. Implementation and performance study of the LDPC coding in the DVB-S2 link system using MATLAB. In 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) (pp. 669-674). IEEE. DOI: https://doi.org/10.1109/STA.2016.7951982

[21] Thi Bao Nguyen, T., Nguyen Tan, T. and Lee, H., 2021. Low-complexity high-throughput QC-LDPC decoder for 5G new radio wireless communication. Electronics, 10(4), p.516. DOI: https://doi.org/10.3390/electronics10040516

[22] Kadhim, A.A. and Abboud, M.K., 2015. Joint Forward Error Correction and Network Coding for Wireless Sensor Networks. International Journal of Innovations in Engineering and Technology (IJIET), 6(2).

[23] Abboud, M.K., Azeez, Y.F. and Abbass, R.J., 2024. BER-performance evaluation for 5G-PD-NOMA system in multipath communication channels. TELKOMNIKA (Telecommunication Computing Electronics and Control), 22(1), pp.26-33. DOI: https://doi.org/10.12928/telkomnika.v22i1.24955

[24] Ahmed, A., Rasheed, H. and Liyanage, M., 2021. Millimeter-Wave Channel Modeling in a Vehicular Ad-Hoc Network Using Bose–Chaudhuri–Hocquenghem (BCH) Code. Electronics 2021, 10, 992 [online] DOI: https://doi.org/10.3390/electronics10090992

[25] Zhang, C., Lin, Y., Wang, D. and Hu, J., 2024. Design of low-power turbo encoder and decoder for nb-iot. Chinese Journal of Electronics, 33(2), pp.403-414. DOI: https://doi.org/10.23919/cje.2022.00.225

[26] Chen, M., Xiao, X., Li, X., Yu, J., Huang, Z.R., Li, F. and Chen, L., 2016. Improved BER performance of real-time DDO-OFDM systems using interleaved Reed–Solomon codes. IEEE Photonics Technology Letters, 28(9), pp.1014-1017. DOI: https://doi.org/10.1109/LPT.2016.2523268

[27] Ali, M.M., Hashim, S.J., Chaudhary, M.A., Ferré, G., Rokhani, F.Z. and Ahmad, Z., 2023. A reviewing approach to analyze the advancements of error detection and correction codes in channel coding with emphasis on LPWAN and IoT systems. IEEE Access, 11, pp.127077-127097. DOI: https://doi.org/10.1109/ACCESS.2023.3331417

[28] Vivier, G., Mannoni, V., Dehmas, F., Berg, V., Mroueh, L., Yu, Y., Duchemin, D., Gorce, J.M., Manco-Vasquez, J. and Bader, F., 2019, June. Beyond LoRa and NB-IoT: Proposals for Future LPWA Systems. In 2019 European Conference on Networks and Communications (EuCNC) (pp. 523-527). IEEE. DOI: https://doi.org/10.1109/EuCNC.2019.8802007

[29] Cuc, A.M., Morgoș, F.L. and Grava, C., 2023. Performance analysis of turbo codes, LDPC codes, and polar codes over an AWGN channel in the presence of inter symbol interference. Sensors, 23(4), p.1942. DOI: https://doi.org/10.3390/s23041942

[30] Hyla, J., Sułek, W., Izydorczyk, W., Dziczkowski, L. and Filipowski, W., 2022. Efficient ldpc encoder design for iot-type devices. Applied sciences, 12(5), p.2558. DOI: https://doi.org/10.3390/app12052558

[31] Javaid, N., Rehman, O., Alrajeh, N., Khan, Z.A., Manzoor, B. and Ahmed, S., 2013. Aid: An energy efficient decoding scheme for ldpc codes in wireless body area sensor networks. Procedia Computer Science, 21, pp.449-454. DOI: https://doi.org/10.1016/j.procs.2013.09.060

[32] Nguyen, D.H. and Nguyen, H., 2015, June. An improved Log-MAP algorithm based on polynomial regression function for LTE Turbo decoding. In 2015 IEEE International Conference on Communication Workshop (ICCW) (pp. 2163-2167). IEEE. DOI: https://doi.org/10.1109/ICCW.2015.7247502

[33] Ez-Zazi, I., Arioua, M., El Oualkadi, A. and Lorenz, P., 2017. A hybrid adaptive coding and decoding scheme for multi-hop wireless sensor networks. Wireless Personal Communications, 94(4), pp.3017-3033. DOI: https://doi.org/10.1007/s11277-016-3763-1

Downloads

Published

07-01-2026

Data Availability Statement

Data will be made available on request.

Issue

Section

Research Articles

How to Cite

Afuye, J.K., Ubochi, B.C. and Adedeji, K.B. (2026) “Investigating the Performance of Different Coding Schemes for Narrowband Internet of Things (NB-IoT) Applications”, Journal of Engineering Advancements, 6(04), pp. 166–172. doi:10.38032/jea.2025.04.004.