Investigation on Circular Array of Turbulent Impinging Round Jets at Confined Case: A CFD Study

Authors

  • Sudipta Debnath Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
  • Md Tanvir Khan Department of Mechanical and System Engineering, Okayama University, Okayama – 700-8530, Japan https://orcid.org/0000-0001-9863-0411
  • Zahir Uddin Ahmed Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh https://orcid.org/0000-0001-8191-5875

DOI:

https://doi.org/10.38032/jea.2022.04.002

Keywords:

Thermal Performance Factor, Pressure Coefficient, Swirl, Reynolds Stress, CFD

Abstract

Jet impingement has immense applications in industrial cooling, such as glass tempering, turbine blades, electrical equipment, etc. The interplay in-between several jet arrangements and the effect of swirl intensity require enormous study to achieve steady heat transfer. This paper numerically investigates an inline array of 25 circular confined swirling air jets impinging vertically on a flat surface. In this regard, three-dimensional simulations are executed using the finite volume method for a number of control parameters, such as Reynolds number (Re = 11600, 24600, and 35000), impinging distance (H/D = 0.25, 0.5, 1), swirl number (S = 0.3 and 0.75) and jet-to-jet separation distance (Z/D = 2.5), where, D is the nozzle diameter. Impinging pressure distribution, flow velocity, surface Nusselt number, and Reynolds stresses are investigated for different operating conditions. The results reveal that both the wall pressure and surface Nusselt number are comparatively uniform in the case of high swirl flow. Moreover, distinct heat transfer behavior is observed from the unconfined condition for high swirl flow in which the heat transfer is constant after a certain radial distance. The Reynolds normal stress adjacent to the nozzle exit is more rigorous than the downstream regions while Reynolds shear stress varies unpredictably along the radial direction. In addition, an estimated 102 % enhancement in average Nusselt number is observed for high swirl flow, at a Reynolds number increment from 11600 to 35000. This enhancement is evident by 23 % in terms of thermal performance factor.  Besides, the average Nusselt number and thermal performance factor augmented by 19 % and 8 %, respectively, for an increased swirl intensity at low a Reynolds number (Re =11600).

References

Röger, M., Buck, R. and Müller-Steinhagen, H., 2005. Numerical and experimental investigation of a multiple air jet cooling system for application in a solar thermal receiver. DOI: https://doi.org/10.1115/1.1928910

Han, J.C., 2004. Recent studies in turbine blade cooling. International journal of rotating machinery, 10(6), pp.443-457. DOI: https://doi.org/10.1155/S1023621X04000442

Becko, Y., 1976. Impingement Cooling—A Review, Von Karman Institute for Fluid Dynamic, Lecture Series 83, Turbine Blade Cooling.

Hall, C.W., 1988. Handbook of industrial drying, Dry. Technol. 6(3), pp. 571–573. DOI: https://doi.org/10.1080/07373938808916399

Yang, L., Ren, J., Jiang, H. and Ligrani, P., 2014. Experimental and numerical investigation of unsteady impingement cooling within a blade leading edge passage. International Journal of Heat and Mass Transfer, 71, pp.57-68. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.006

Martin, H., 1977. Heat and mass transfer between impinging gas jets and solid surfaces. In Advances in Heat Transfer, 13, pp. 1-60, Elsevier. DOI: https://doi.org/10.1016/S0065-2717(08)70221-1

Colucci, D.W. and Viskanta, R., 1996. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Experimental Thermal and Fluid Science, 13(1), pp.71-80. DOI: https://doi.org/10.1016/0894-1777(96)00015-5

Saad, N.R., Polat, S. and Douglas, W.J.M., 1992. Confined multiple impinging slot jets without crossflow effects. International Journal of Heat and Fuid Flow, 13(1), pp.2-14. DOI: https://doi.org/10.1016/0142-727X(92)90054-D

Huber, A.M. and Viskanta, R., 1994. Convective heat transfer to a confined impinging array of air jets with spent air exits. J. Heat Transfer, 116(3), pp. 570-576. DOI: https://doi.org/10.1115/1.2910908

Markal, B., 2018. Experimental investigation of heat transfer characteristics and wall pressure distribution of swirling coaxial confined impinging air jets. International Journal of Heat and Mass Transfer, 124, pp.517-532. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.101

Markal, B., 2019. The effect of total flowrate on the cooling performance of swirling coaxial impinging jets. Heat and Mass Transfer, 55(11), pp.3275-3288. DOI: https://doi.org/10.1007/s00231-019-02653-7

Habib, M.A. and Whitelaw, J.H., 1980. Velocity characteristics of confined coaxial jets with and without swirl. J. Fluids Eng. 102(1), pp. 47-53. DOI: https://doi.org/10.1115/1.3240623

Memar, H., Holman, J.P. and Dellenback, P.A., 1993. The effect of a swirled annular jet on convective heat transfer in confined coaxial jet mixing. International Journal of Heat and Mass Transfer, 36(16), pp.3921-3930. DOI: https://doi.org/10.1016/0017-9310(93)90142-S

Petera, K. and Dostál, M., 2017. Heat transfer in a confined impinging jet with swirling velocity component. In EPJ Web of Conferences, 143, p. 02091. EDP Sciences. DOI: https://doi.org/10.1051/epjconf/201714302091

Shuja, S.Z., Yilbas, B.S. and Rashid, M., 2003. Confined swirling jet impingement onto an adiabatic wall. International Journal of Heat and Mass Transfer, 46(16), pp.2947-2955. DOI: https://doi.org/10.1016/S0017-9310(03)00073-5

Chouaieb, S., Kriaa, W., Mhiri, H. and Bournot, P., 2017. Swirl generator effect on a confined coaxial jet characteristics. International Journal of Hydrogen Energy, 42(48), pp. 29014-29025. DOI: https://doi.org/10.1016/j.ijhydene.2017.08.061

Liu, L., Zhang, J., Liu, S., Wang, K. and Gu, H., 2021. Decay law and swirl length of swirling gas-liquid flow in a vertical pipe. International Journal of Multiphase Flow, 137, p.103570. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2021.103570

Yan, J., Gui, N., Xie, G. and Gao, J., 2014. Direct numerical simulation and visualization of biswirling jets. Advances in Mechanical Engineering, 6, p.193731. DOI: https://doi.org/10.1155/2014/193731

Fénot, M., Dorignac, E. and Lalizel, G., 2015. Heat transfer and flow structure of a multichannel impinging jet. International Journal of Thermal Sciences, 90, pp.323-338. DOI: https://doi.org/10.1016/j.ijthermalsci.2014.12.006

Ahmed, Z.U., Al-Abdeli, Y.M. and Guzzomi, F.G., 2017. Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets. International Journal of Thermal Sciences, 114, pp.241-256. DOI: https://doi.org/10.1016/j.ijthermalsci.2016.12.013

Ahmed, Z.U., Al-Abdeli, Y.M. and Matthews, M.T., 2015. The effect of inflow conditions on the development of non-swirling versus swirling impinging turbulent jets. Computers & Fluids, 118, pp.255-273. DOI: https://doi.org/10.1016/j.compfluid.2015.06.024

Wu, F., Li, L., Wang, J., Fan, X. and Du, C., 2019. Numerical investigations on flow and heat transfer of swirl and impingement composite cooling structures of turbine blade leading edge. International Journal of Heat and Mass Transfer, 144, p. 118625.

Debnath, S., Khan, M.H.U. and Ahmed, Z.U., 2020. Turbulent swirling impinging jet arrays: A numerical study on fluid flow and heat transfer. Thermal Science and Engineering Progress, 19, p. 100580. DOI: https://doi.org/10.1016/j.tsep.2020.100580

Debnath, S., Khan, M.H.U., Ahmed, Z.U. and Alam, M.M., 2018. The effect of swirl on array of turbulent impinging jets. In International Conference on Mechanical, Industrial and Energy Engineering, December, 2018, Khulna, Bangladesh.

Debnath, S. and Ahmed, Z.U., 2020. Computational analysis of multiple non-swirling & swirling impinging air jets. In International Conference on Mechanical, Industrial and Energy Engineering, December, Khulna, Bangladesh.

Wannassi, M. and Monnoyer, F., 2015. Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. Applied Thermal Engineering, 78, pp.62-73. DOI: https://doi.org/10.1016/j.applthermaleng.2014.12.043

Hollworth, B.R., Lehmann, G. and Rosiczkowski, J., 1983. Arrays of impinging jets with spent fluid removal through vent holes on the target surface, part 2: local heat transfer. DOI: https://doi.org/10.1115/1.3227428

Zhang, J., Sun, Y., Li, J. and He, X., 2020. Study on the hybrid cooling of the flame tube in a small triple-swirler combustor. Energies, 13(21), p. 5554. DOI: https://doi.org/10.3390/en13215554

Wu, F., Li, L., Wang, J., Fan, X. and Du, C., 2019. Numerical investigations on flow and heat transfer of swirl and impingement composite cooling structures of turbine blade leading edge. International Journal of Heat and Mass Transfer, 144, p. 118625. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118625

Caliskan, S. and Baskaya, S., 2012. Experimental investigation of impinging jet array heat transfer from a surface with V-shaped and convergent-divergent ribs. International Journal of Thermal Sciences, 59, pp. 234-246. DOI: https://doi.org/10.1016/j.ijthermalsci.2012.04.013

Chauhan, R. and Thakur, N.S., 2013. Heat transfer and friction factor correlations for impinging jet solar air heater. Experimental Thermal and Fluid Science, 44, pp.760-767. DOI: https://doi.org/10.1016/j.expthermflusci.2012.09.019

Hatami, M., Bazdidi-Tehrani, F., Abouata, A. and Mohammadi-Ahmar, A., 2018. Investigation of geometry and dimensionless parameters effects on the flow field and heat transfer of impingement synthetic jets. International Journal of Thermal Sciences, 127, pp.41-52. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.01.011

Wang, C., Wang, Z., Wang, L., Luo, L. and Sundén, B., 2019. Experimental study of fluid flow and heat transfer of jet impingement in cross-flow with a vortex generator pair. International Journal of Heat and Mass Transfer, 135, pp. 935-949. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.024

Katti, V.V., Yasaswy, S.N. and Prabhu, S.V., 2011. Local heat transfer distribution between smooth flat surface and impinging air jet from a circular nozzle at low Reynolds numbers. Heat and Mass Transfer, 47(3), pp. 237-244. DOI: https://doi.org/10.1007/s00231-010-0716-1

Jeffers, N., Stafford, J., Conway, C., Punch, J. and Walsh, E., 2016. The influence of the stagnation zone on the fluid dynamics at the nozzle exit of a confined and submerged impinging jet. Experiments in Fluids, 57(2), pp. 1-15. DOI: https://doi.org/10.1007/s00348-015-2092-6

Ekkad, S.V. and Han, J.C., 2000. A transient liquid crystal thermography technique for gas turbine heat transfer measurements. Measurement Science and Technology, 11(7), p. 957. DOI: https://doi.org/10.1088/0957-0233/11/7/312

Ichikawa, Y., Motosuke, M., Kameya, Y., Yamamoto, M. and Honami, S., 2016. Three-dimensional flow characterization of a square array of multiple circular impinging jets using stereoscopic PIV and heat transfer relation. Journal of Visualization, 19(1), pp. 89-101. DOI: https://doi.org/10.1007/s12650-015-0296-8

Buzzard, W.C., Ren, Z., Ligrani, P.M., Nakamata, C. and Ueguchi, S., 2017. Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer. International Journal of Heat and Mass Transfer, 110, pp. 805-816. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.061

Ligrani, P.M., Ren, Z. and Buzzard, W.C., 2017. Impingement jet array heat transfer with small-scale cylinder target surface roughness arrays. International Journal of Heat and Mass Transfer, 107, pp. 895-905. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.123

Singh, D., Premachandran, B. and Kohli, S., 2015. Circular air jet impingement cooling of a circular cylinder with flow confinement. International Journal of Heat and Mass Transfer, 91, pp. 969-989. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.037

Caggese, O., Gnaegi, G., Hannema, G., Terzis, A. and Ott, P., 2013. Experimental and numerical investigation of a fully confined impingement round jet. International Journal of Heat and Mass Transfer, 65, pp. 873-882. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.043

Manca, O., Cirillo, L., Nardini, S., Buonomo, B. and Ercole, D., 2016. Experimental investigation on fluid dynamic and thermal behavior in confined impinging round jets in aluminum foam. Energy Procedia, 101, pp. 1095-1102. DOI: https://doi.org/10.1016/j.egypro.2016.11.149

Islam, S.M., Khan, M.T. and Ahmed, Z.U., 2020. Effect of design parameters on flow characteristics of an aerodynamic swirl nozzle. Progress in Computational Fluid Dynamics, an International Journal, 20(5), pp. 249-262.. DOI: https://doi.org/10.1504/PCFD.2020.109912

Khan, M.T., Islam, S.M. and Ahmed, Z.U., 2020. Near-wall and turbulence behavior of swirl flows through an aerodynamic nozzle. Journal of Engineering Advancements, 1(2), pp. 43-52. DOI: https://doi.org/10.38032/jea.2020.02.003

Khan, T. and Ahmed, Z.U., 2022. Effect of nanofluids on heat transfer characteristics of an aerodynamic swirl nozzle for isothermal and isoflux conditions. Australian Journal of Mechanical Engineering, pp. 1-19. DOI: https://doi.org/10.1080/14484846.2022.2066837

Ahmed, Z.U., 2016. An experimental and numerical study of surface interactions in turbulent swirling jets. Dissertation submitted for the degree of Doctor of Philosophy, School of Engineering, Edith Cowan University, Australia.

Debnath, S., Ahmed, Z.U., Ikhlaq, M. and Khan, T., Thermal characteristics of arrays of swirling impinging jets: Effect of Reynolds number, impingement distance, and jet‐to‐jet separation. Heat Transfer, 51(1), pp. 585-608. DOI: https://doi.org/10.1002/htj.22708

Khan, T., Debnath, S., Ahmed, Z. U., & Islam, S.M., 2022. Effects of impinging distance, reynolds number, and swirl on the flow and heat transfer behaviors of arrays of circular impinging jets: A numerical approach. In International Conference on Mechanical, Industrial and Energy Engineering December, Khulna, Bangladesh.

Ahmed, Z.U., Al-Abdeli, Y.M. and Guzzomi, F.G., 2016. Heat transfer characteristics of swirling and non-swirling impinging turbulent jets. International Journal of Heat and Mass Transfer, 102, pp. 991-1003. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.037

Downloads

Published

23-12-2022
  • Abstract view246

How to Cite

Debnath, S., Khan, M. T. ., & Ahmed, Z. U. (2022). Investigation on Circular Array of Turbulent Impinging Round Jets at Confined Case: A CFD Study. Journal of Engineering Advancements, 3(04), 144–154. https://doi.org/10.38032/jea.2022.04.002

Issue

Section

Research Articles