Investigation on Circular Array of Turbulent Impinging Round Jets at Confined Case: A CFD Study
DOI:
https://doi.org/10.38032/jea.2022.04.002Keywords:
Thermal Performance Factor, Pressure Coefficient, Swirl, Reynolds Stress, CFDAbstract
Jet impingement has immense applications in industrial cooling, such as glass tempering, turbine blades, electrical equipment, etc. The interplay in-between several jet arrangements and the effect of swirl intensity require enormous study to achieve steady heat transfer. This paper numerically investigates an inline array of 25 circular confined swirling air jets impinging vertically on a flat surface. In this regard, three-dimensional simulations are executed using the finite volume method for a number of control parameters, such as Reynolds number (Re = 11600, 24600, and 35000), impinging distance (H/D = 0.25, 0.5, 1), swirl number (S = 0.3 and 0.75) and jet-to-jet separation distance (Z/D = 2.5), where, D is the nozzle diameter. Impinging pressure distribution, flow velocity, surface Nusselt number, and Reynolds stresses are investigated for different operating conditions. The results reveal that both the wall pressure and surface Nusselt number are comparatively uniform in the case of high swirl flow. Moreover, distinct heat transfer behavior is observed from the unconfined condition for high swirl flow in which the heat transfer is constant after a certain radial distance. The Reynolds normal stress adjacent to the nozzle exit is more rigorous than the downstream regions while Reynolds shear stress varies unpredictably along the radial direction. In addition, an estimated 102 % enhancement in average Nusselt number is observed for high swirl flow, at a Reynolds number increment from 11600 to 35000. This enhancement is evident by 23 % in terms of thermal performance factor. Besides, the average Nusselt number and thermal performance factor augmented by 19 % and 8 %, respectively, for an increased swirl intensity at low a Reynolds number (Re =11600).
References
Röger, M., Buck, R. and Müller-Steinhagen, H., 2005. Numerical and experimental investigation of a multiple air jet cooling system for application in a solar thermal receiver. DOI: https://doi.org/10.1115/1.1928910
Han, J.C., 2004. Recent studies in turbine blade cooling. International journal of rotating machinery, 10(6), pp.443-457. DOI: https://doi.org/10.1155/S1023621X04000442
Becko, Y., 1976. Impingement Cooling—A Review, Von Karman Institute for Fluid Dynamic, Lecture Series 83, Turbine Blade Cooling.
Hall, C.W., 1988. Handbook of industrial drying, Dry. Technol. 6(3), pp. 571–573. DOI: https://doi.org/10.1080/07373938808916399
Yang, L., Ren, J., Jiang, H. and Ligrani, P., 2014. Experimental and numerical investigation of unsteady impingement cooling within a blade leading edge passage. International Journal of Heat and Mass Transfer, 71, pp.57-68. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.006
Martin, H., 1977. Heat and mass transfer between impinging gas jets and solid surfaces. In Advances in Heat Transfer, 13, pp. 1-60, Elsevier. DOI: https://doi.org/10.1016/S0065-2717(08)70221-1
Colucci, D.W. and Viskanta, R., 1996. Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Experimental Thermal and Fluid Science, 13(1), pp.71-80. DOI: https://doi.org/10.1016/0894-1777(96)00015-5
Saad, N.R., Polat, S. and Douglas, W.J.M., 1992. Confined multiple impinging slot jets without crossflow effects. International Journal of Heat and Fuid Flow, 13(1), pp.2-14. DOI: https://doi.org/10.1016/0142-727X(92)90054-D
Huber, A.M. and Viskanta, R., 1994. Convective heat transfer to a confined impinging array of air jets with spent air exits. J. Heat Transfer, 116(3), pp. 570-576. DOI: https://doi.org/10.1115/1.2910908
Markal, B., 2018. Experimental investigation of heat transfer characteristics and wall pressure distribution of swirling coaxial confined impinging air jets. International Journal of Heat and Mass Transfer, 124, pp.517-532. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.101
Markal, B., 2019. The effect of total flowrate on the cooling performance of swirling coaxial impinging jets. Heat and Mass Transfer, 55(11), pp.3275-3288. DOI: https://doi.org/10.1007/s00231-019-02653-7
Habib, M.A. and Whitelaw, J.H., 1980. Velocity characteristics of confined coaxial jets with and without swirl. J. Fluids Eng. 102(1), pp. 47-53. DOI: https://doi.org/10.1115/1.3240623
Memar, H., Holman, J.P. and Dellenback, P.A., 1993. The effect of a swirled annular jet on convective heat transfer in confined coaxial jet mixing. International Journal of Heat and Mass Transfer, 36(16), pp.3921-3930. DOI: https://doi.org/10.1016/0017-9310(93)90142-S
Petera, K. and Dostál, M., 2017. Heat transfer in a confined impinging jet with swirling velocity component. In EPJ Web of Conferences, 143, p. 02091. EDP Sciences. DOI: https://doi.org/10.1051/epjconf/201714302091
Shuja, S.Z., Yilbas, B.S. and Rashid, M., 2003. Confined swirling jet impingement onto an adiabatic wall. International Journal of Heat and Mass Transfer, 46(16), pp.2947-2955. DOI: https://doi.org/10.1016/S0017-9310(03)00073-5
Chouaieb, S., Kriaa, W., Mhiri, H. and Bournot, P., 2017. Swirl generator effect on a confined coaxial jet characteristics. International Journal of Hydrogen Energy, 42(48), pp. 29014-29025. DOI: https://doi.org/10.1016/j.ijhydene.2017.08.061
Liu, L., Zhang, J., Liu, S., Wang, K. and Gu, H., 2021. Decay law and swirl length of swirling gas-liquid flow in a vertical pipe. International Journal of Multiphase Flow, 137, p.103570. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2021.103570
Yan, J., Gui, N., Xie, G. and Gao, J., 2014. Direct numerical simulation and visualization of biswirling jets. Advances in Mechanical Engineering, 6, p.193731. DOI: https://doi.org/10.1155/2014/193731
Fénot, M., Dorignac, E. and Lalizel, G., 2015. Heat transfer and flow structure of a multichannel impinging jet. International Journal of Thermal Sciences, 90, pp.323-338. DOI: https://doi.org/10.1016/j.ijthermalsci.2014.12.006
Ahmed, Z.U., Al-Abdeli, Y.M. and Guzzomi, F.G., 2017. Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets. International Journal of Thermal Sciences, 114, pp.241-256. DOI: https://doi.org/10.1016/j.ijthermalsci.2016.12.013
Ahmed, Z.U., Al-Abdeli, Y.M. and Matthews, M.T., 2015. The effect of inflow conditions on the development of non-swirling versus swirling impinging turbulent jets. Computers & Fluids, 118, pp.255-273. DOI: https://doi.org/10.1016/j.compfluid.2015.06.024
Wu, F., Li, L., Wang, J., Fan, X. and Du, C., 2019. Numerical investigations on flow and heat transfer of swirl and impingement composite cooling structures of turbine blade leading edge. International Journal of Heat and Mass Transfer, 144, p. 118625.
Debnath, S., Khan, M.H.U. and Ahmed, Z.U., 2020. Turbulent swirling impinging jet arrays: A numerical study on fluid flow and heat transfer. Thermal Science and Engineering Progress, 19, p. 100580. DOI: https://doi.org/10.1016/j.tsep.2020.100580
Debnath, S., Khan, M.H.U., Ahmed, Z.U. and Alam, M.M., 2018. The effect of swirl on array of turbulent impinging jets. In International Conference on Mechanical, Industrial and Energy Engineering, December, 2018, Khulna, Bangladesh.
Debnath, S. and Ahmed, Z.U., 2020. Computational analysis of multiple non-swirling & swirling impinging air jets. In International Conference on Mechanical, Industrial and Energy Engineering, December, Khulna, Bangladesh.
Wannassi, M. and Monnoyer, F., 2015. Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. Applied Thermal Engineering, 78, pp.62-73. DOI: https://doi.org/10.1016/j.applthermaleng.2014.12.043
Hollworth, B.R., Lehmann, G. and Rosiczkowski, J., 1983. Arrays of impinging jets with spent fluid removal through vent holes on the target surface, part 2: local heat transfer. DOI: https://doi.org/10.1115/1.3227428
Zhang, J., Sun, Y., Li, J. and He, X., 2020. Study on the hybrid cooling of the flame tube in a small triple-swirler combustor. Energies, 13(21), p. 5554. DOI: https://doi.org/10.3390/en13215554
Wu, F., Li, L., Wang, J., Fan, X. and Du, C., 2019. Numerical investigations on flow and heat transfer of swirl and impingement composite cooling structures of turbine blade leading edge. International Journal of Heat and Mass Transfer, 144, p. 118625. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.118625
Caliskan, S. and Baskaya, S., 2012. Experimental investigation of impinging jet array heat transfer from a surface with V-shaped and convergent-divergent ribs. International Journal of Thermal Sciences, 59, pp. 234-246. DOI: https://doi.org/10.1016/j.ijthermalsci.2012.04.013
Chauhan, R. and Thakur, N.S., 2013. Heat transfer and friction factor correlations for impinging jet solar air heater. Experimental Thermal and Fluid Science, 44, pp.760-767. DOI: https://doi.org/10.1016/j.expthermflusci.2012.09.019
Hatami, M., Bazdidi-Tehrani, F., Abouata, A. and Mohammadi-Ahmar, A., 2018. Investigation of geometry and dimensionless parameters effects on the flow field and heat transfer of impingement synthetic jets. International Journal of Thermal Sciences, 127, pp.41-52. DOI: https://doi.org/10.1016/j.ijthermalsci.2018.01.011
Wang, C., Wang, Z., Wang, L., Luo, L. and Sundén, B., 2019. Experimental study of fluid flow and heat transfer of jet impingement in cross-flow with a vortex generator pair. International Journal of Heat and Mass Transfer, 135, pp. 935-949. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.024
Katti, V.V., Yasaswy, S.N. and Prabhu, S.V., 2011. Local heat transfer distribution between smooth flat surface and impinging air jet from a circular nozzle at low Reynolds numbers. Heat and Mass Transfer, 47(3), pp. 237-244. DOI: https://doi.org/10.1007/s00231-010-0716-1
Jeffers, N., Stafford, J., Conway, C., Punch, J. and Walsh, E., 2016. The influence of the stagnation zone on the fluid dynamics at the nozzle exit of a confined and submerged impinging jet. Experiments in Fluids, 57(2), pp. 1-15. DOI: https://doi.org/10.1007/s00348-015-2092-6
Ekkad, S.V. and Han, J.C., 2000. A transient liquid crystal thermography technique for gas turbine heat transfer measurements. Measurement Science and Technology, 11(7), p. 957. DOI: https://doi.org/10.1088/0957-0233/11/7/312
Ichikawa, Y., Motosuke, M., Kameya, Y., Yamamoto, M. and Honami, S., 2016. Three-dimensional flow characterization of a square array of multiple circular impinging jets using stereoscopic PIV and heat transfer relation. Journal of Visualization, 19(1), pp. 89-101. DOI: https://doi.org/10.1007/s12650-015-0296-8
Buzzard, W.C., Ren, Z., Ligrani, P.M., Nakamata, C. and Ueguchi, S., 2017. Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer. International Journal of Heat and Mass Transfer, 110, pp. 805-816. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.061
Ligrani, P.M., Ren, Z. and Buzzard, W.C., 2017. Impingement jet array heat transfer with small-scale cylinder target surface roughness arrays. International Journal of Heat and Mass Transfer, 107, pp. 895-905. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.123
Singh, D., Premachandran, B. and Kohli, S., 2015. Circular air jet impingement cooling of a circular cylinder with flow confinement. International Journal of Heat and Mass Transfer, 91, pp. 969-989. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.037
Caggese, O., Gnaegi, G., Hannema, G., Terzis, A. and Ott, P., 2013. Experimental and numerical investigation of a fully confined impingement round jet. International Journal of Heat and Mass Transfer, 65, pp. 873-882. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.043
Manca, O., Cirillo, L., Nardini, S., Buonomo, B. and Ercole, D., 2016. Experimental investigation on fluid dynamic and thermal behavior in confined impinging round jets in aluminum foam. Energy Procedia, 101, pp. 1095-1102. DOI: https://doi.org/10.1016/j.egypro.2016.11.149
Islam, S.M., Khan, M.T. and Ahmed, Z.U., 2020. Effect of design parameters on flow characteristics of an aerodynamic swirl nozzle. Progress in Computational Fluid Dynamics, an International Journal, 20(5), pp. 249-262.. DOI: https://doi.org/10.1504/PCFD.2020.109912
Khan, M.T., Islam, S.M. and Ahmed, Z.U., 2020. Near-wall and turbulence behavior of swirl flows through an aerodynamic nozzle. Journal of Engineering Advancements, 1(2), pp. 43-52. DOI: https://doi.org/10.38032/jea.2020.02.003
Khan, T. and Ahmed, Z.U., 2022. Effect of nanofluids on heat transfer characteristics of an aerodynamic swirl nozzle for isothermal and isoflux conditions. Australian Journal of Mechanical Engineering, pp. 1-19. DOI: https://doi.org/10.1080/14484846.2022.2066837
Ahmed, Z.U., 2016. An experimental and numerical study of surface interactions in turbulent swirling jets. Dissertation submitted for the degree of Doctor of Philosophy, School of Engineering, Edith Cowan University, Australia.
Debnath, S., Ahmed, Z.U., Ikhlaq, M. and Khan, T., Thermal characteristics of arrays of swirling impinging jets: Effect of Reynolds number, impingement distance, and jet‐to‐jet separation. Heat Transfer, 51(1), pp. 585-608. DOI: https://doi.org/10.1002/htj.22708
Khan, T., Debnath, S., Ahmed, Z. U., & Islam, S.M., 2022. Effects of impinging distance, reynolds number, and swirl on the flow and heat transfer behaviors of arrays of circular impinging jets: A numerical approach. In International Conference on Mechanical, Industrial and Energy Engineering December, Khulna, Bangladesh.
Ahmed, Z.U., Al-Abdeli, Y.M. and Guzzomi, F.G., 2016. Heat transfer characteristics of swirling and non-swirling impinging turbulent jets. International Journal of Heat and Mass Transfer, 102, pp. 991-1003. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.037
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Sudipta Debnath, Md Tanvir Khan, Zahir Uddin Ahmed
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Most read articles by the same author(s)
- Md Tanvir Khan, Sharif M. Islam, Zahir U. Ahmed, Near-wall and Turbulence Behavior of Swirl Flows through an Aerodynamic Nozzle , Journal of Engineering Advancements: Vol. 1 No. 02 (2020)