Characteristics of Ion Beam for Various Gases in a Spherical Plasma Focus Device

Authors

  • M A Malek Physics Discipline, Khulna University, Khulna-9208, Bangladesh

DOI:

https://doi.org/10.38032/jea.2022.03.003

Keywords:

Spherical plasma focus; Lee code; Plasma pinch; Ion beam; Flux, and fluence.

Abstract

This study presents the computed ion beam properties (flux, fluence, and energy) of argon, neon, and nitrogen gases with pressure variation in the spherical plasma focus device, KPU200 SPF. Numerical experiments are performed using the Lee code (version: RADPFV5.16FIB) with the gases in the pressure range of 0.10 - 19 Torr. The electrode geometry has been obtained by applying the ‘equivalent straightened electrode’ technique. The computed results for each of the gases show that the ion beam properties increase with the increase in pressure until reach a peak value and then start to reduce with further pressure increase. The peak ion beam flux (ions m-2 s-1), fluence (ions m-2), and energy (J) from heavier argon pinch plasma are found as 5.31 × 1027 at 2 Torr, 8.93 × 1020 at 3.5 Torr, and 3.46 × 104 at 3 Torr, respectively which are the utmost values from neon and nitrogen gases. Significant correlations of pinch radius and duration, effective charge number, and induced voltage with these ion beam properties are noticed and discussed in this paper. The obtained results of this study are compared with those of the NX2 plasma focus device that makes the consistency of the present research work.

References

Lee, S., Saw, S.H., Soto, L., Springham, S.V. and Moo, S.P., 2009. Numerical experiments on plasma focus neutron yield versus pressure compared with laboratory experiments. Plasma Physics and Controlled Fusion, 51(7), p.075006. DOI: https://doi.org/10.1088/0741-3335/51/7/075006

Liu, M., 1996. Soft X-rays from compact plasma focus (Doctoral dissertation).

Habibi, M., Amrollahi, R. and Etaati, G.R., 2010. Experimental study of hard X-ray emission with different anode tips in APF plasma focus device. Journal of fusion energy, 29(1), pp.49-54. DOI: https://doi.org/10.1007/s10894-009-9229-7

Filippov, N.V., Filippova, T.I. and Vinogradov, V.P., 1962. Dense high-temperature plasma in the region of non-cylindrical cumulation of Z-pinch. Nucl. Fusion: Suppl, p.577.

Mather, J.W., 1964. Investigation of the high‐energy acceleration mode in the coaxial gun. The Physics of Fluids, 7(11), pp.S28-S34. DOI: https://doi.org/10.1063/1.1711086

Mather, J.W., 1965. Formation of a high‐density deuterium plasma focus. The Physics of Fluids, 8(2), pp.366-377. DOI: https://doi.org/10.1063/1.1761231

Saw, S.H., Damideh, V., Chong, P.L., Lee, P., Rawat, R.S. and Lee, S., 2014, August. A 160 kJ dual plasma focus (DuPF) for fusion-relevant materials testing and nano-materials fabrication. In International Journal of Modern Physics: Conference Series (Vol. 32, p. 1460322). The Authors. DOI: https://doi.org/10.1142/S2010194514603226

Hassan, M., Rawat, R.S., Lee, P., Hassan, S.M., Qayyum, A., Ahmad, R., Murtaza, G. and Zakaullah, M., 2008. Synthesis of nanocrystalline multiphase titanium oxycarbide (TiCxOy) thin films by UNU/ICTP and NX2 plasma focus devices. Applied Physics A, 90(4), pp.669-677. DOI: https://doi.org/10.1007/s00339-007-4335-8

Niranjan, R., Rout, R.K., Srivastava, R., Chakravarthy, Y., Mishra, P., Kaushik, T.C. and Gupta, S.C., 2015. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device. Applied Surface Science, 355, pp.989-998. DOI: https://doi.org/10.1016/j.apsusc.2015.07.192

Ahmad, M., Al-Hawat, S. and Akel, M., 2013. Porous structure formation on silicon surface treated by plasma focus device. Journal of Fusion Energy, 32(4), pp.471-478. DOI: https://doi.org/10.1007/s10894-013-9596-y

Bhuyan, M., Mohanty, S.R., Rao, C.V.S., Rayjada, P.A. and Raole, P.M., 2013. Plasma focus assisted damage studies on tungsten. Applied surface science, 264, pp.674-680. DOI: https://doi.org/10.1016/j.apsusc.2012.10.093

Niranjan, R., Rout, R.K., Tomar, B.S., Ramanjaneyulu, P.S., Paranjape, D.B. and Kaushik, T.C., 2018. Application of medium energy plasma focus device in study of radioisotopes. Physics Letters A, 382(46), pp.3365-3368. DOI: https://doi.org/10.1016/j.physleta.2018.09.015

Damideh, V., Chin, O.H., Saw, S.H., Lee, P.C.K., Rawat, R.S. and Lee, S., 2019. Characteristics of Fast ion beam in Neon and Argon filled plasma focus correlated with Lee Model Code. Vacuum, 169, p.108916. DOI: https://doi.org/10.1016/j.vacuum.2019.108916

Auluck, S., Kubes, P., Paduch, M., Sadowski, M.J., Krauz, V.I., Lee, S., Soto, L., Scholz, M., Miklaszewski, R., Schmidt, H. and Blagoev, A., 2021. Update on the scientific status of the plasma focus. Plasma, 4(3), pp.450-669. DOI: https://doi.org/10.3390/plasma4030033

Szydlowski, A., Banaszak, A., Bienkowska, B., Ivanova-Stanik, I.M., Scholz, M. and Sadowski, M.J., 2004. Measurements of fast ions and neutrons emitted from PF-1000 plasma focus device. Vacuum, 76(2-3), pp.357-360. DOI: https://doi.org/10.1016/j.vacuum.2004.07.040

Akel, M., Salo, S.A., Saw, S.H. and Lee, S., 2014. Characterization of oxygen ion beams emitted from plasma focus. Vacuum, 110, pp.54-57. DOI: https://doi.org/10.1016/j.vacuum.2014.08.011

Akel, M., Salo, S.A., Ismael, S., Saw, S.H. and Lee, S., 2017. Comparison of measured and computed beam ion current densities emitted from two 2 kJ plasma focus machines. Vacuum, 136, pp.163-167. DOI: https://doi.org/10.1016/j.vacuum.2016.12.005

Lee, S., 2022. Radiative Dense Plasma Focus Computation Package: RADPF www.plasmafocus.net

Lee, S., 2014. Plasma focus radiative model: Review of the Lee model code. Journal of Fusion Energy, 33(4), pp.319-335. DOI: https://doi.org/10.1007/s10894-014-9683-8

Lee, S. and Saw, S.H., 2017. The plasma focus—numerical experiments, insights and applications. In Plasma Science and Technology for Emerging Economies (pp. 113-232). Springer, Singapore.

Scholz, M. and Ivanova-Stanik, I.M., 2000. Initial phase in plasma focus device—model and computer simulation. Vacuum, 58(2-3), pp.287-293. DOI: https://doi.org/10.1016/S0042-207X(00)00180-9

Lee, S. and Saw, S.H., 2012. Plasma focus ion beam fluence and flux—Scaling with stored energy. Physics of Plasmas, 19(11), p.112703. DOI: https://doi.org/10.1063/1.4766744

Lee, S. and Saw, S.H., 2013. Plasma focus ion beam fluence and flux—For various gases. Physics of Plasmas, 20(6), p.062702. DOI: https://doi.org/10.1063/1.4811650

Maslov, V.V., Rumyantsev, V.G., Basmanov, V.F., Budnikov, D.V., Garin, A.V., Drozdov, I.Y., Ershov, D.A., Korkin, D.S., Makeev, N.G., Molodtsev, D.A. and Moskvin, N.I., 2014. A KPU-200 movable capacitor installation. Instruments and Experimental Techniques, 57(2), pp.131-134. DOI: https://doi.org/10.1134/S0020441214010254

Zavyalov, N.V., Maslov, V.V., Rumyantsev, V.G., Drozdov, I.Y., Ershov, D.A., Korkin, D.S., Molodtsev, D.A., Smerdov, V.I., Falin, A.P. and Yukhimchuk, A.A., 2013. A source with a 1013 DT neutron yield on the basis of a spherical plasma focus chamber. Plasma Physics Reports, 39(3), pp.243-247. DOI: https://doi.org/10.1134/S1063780X12120070

Ay, Y., Al-Halim, M.A.A. and Bourham, M.A., 2016. MHD simulation for neutron yield, radiations and beam-ion properties in the spherical plasma focus. Journal of Fusion Energy, 35(2), pp.407-414. DOI: https://doi.org/10.1007/s10894-015-0046-x

Yaşar, A.Y., 2020. Neutron and Ion Production with Various Applied Voltages in Spherical Plasma Focus. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(1), pp.135-141.

Ay, Y., 2021. Spherical plasma focus operated with nitrogen and neon gases for soft x-rays (bremsstrahlung radiation, line radiation, and radiative recombination). Plasma Physics and Controlled Fusion, 63(7), p.075011. DOI: https://doi.org/10.1088/1361-6587/abf22f

Ay, Y., 2019. Effect of the cathode radius on plasma dynamics and radiation emissions in a spherical plasma focus device. Physics of Plasmas, 26(10), p.102506. DOI: https://doi.org/10.1063/1.5111021

Ay, Y., 2021. Neon soft x-ray yield optimization in spherical plasma focus device. Plasma Physics and Controlled Fusion, 63(11), p.115009. DOI: https://doi.org/10.1088/1361-6587/ac206d

Lee, S., 2014. Radiative Dense Plasma Focus Computation Package: RADPF, 2010 http://www. plasmafocus. net. http://www. plasmafocus. net/IPFS/modelpackage/File1RADPF. htm. http://www. plasma focus. net/IPFS/modelpackage/File2Theory. pdf. http://www. plasma focus. net/IPFS/modelpackage. UPF. htm.

Akel, M., Salo, S.A., Saw, S.H. and Lee, S., 2014. Properties of ion beams generated by nitrogen plasma focus. Journal of Fusion Energy, 33(2), pp.189-197. DOI: https://doi.org/10.1007/s10894-013-9660-7

Akel, M., Salo, S.A., Saw, S.H. and Lee, S., 2014. Ion beam features produced by two plasma focus machines operated with different gases. IEEE Transactions on Plasma Science, 42(9), pp.2202-2206. DOI: https://doi.org/10.1109/TPS.2014.2342743

Lee, S. and Saw, S.H., 2017. The plasma focus—numerical experiments, insights and applications. In Plasma Science and Technology for Emerging Economies (pp. 113-232). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-10-4217-1_3

Saw, S. H., 2012. Plasma focus numerical experiments and BORA—2370-6 school and training course on dense magnetized plasma as a source of ionizing radiations, their diagnostics and applications, Abdus Salam International Centre for theoretical physics, 8–12 Oct 2012.

Akel, M., Ismael, S., Lee, S., Saw, S.H. and Kunze, H.J., 2017. Numerical experiments on the PF1000 plasma focus device operated with nitrogen and oxygen gases. Modern Physics Letters B, 31(16), p.1750167. DOI: https://doi.org/10.1142/S0217984917501676

Lee, S., Saw, S.H. and Ali, J., 2013. Numerical experiments on radiative cooling and collapse in plasma focus operated in krypton. Journal of Fusion Energy, 32(1), pp.42-49. DOI: https://doi.org/10.1007/s10894-012-9522-8

Downloads

Published

24-09-2022
  • Abstract view92

How to Cite

Malek, M. A. (2022). Characteristics of Ion Beam for Various Gases in a Spherical Plasma Focus Device. Journal of Engineering Advancements, 3(03), 91–95. https://doi.org/10.38032/jea.2022.03.003

Issue

Section

Research Articles