Predicting Retinal Diseases using Efficient Image Processing and Convolutional Neural Network (CNN)


  • Asif Mohammad Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh
  • Mahruf Zaman Utso Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh
  • Shifat Bin Habib Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh
  • Amit Kumar Das Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh



Retinal Disease, Deep Learning, Image Processing, Neural Network, Convolutional Neural Network


Neural networks in image processing are becoming a more crucial and integral part of machine learning as computational technology and hardware systems are advanced. Deep learning is also getting attention from the medical sector as it is a prominent process for classifying diseases.  There is a lot of research to predict retinal diseases using deep learning algorithms like Convolutional Neural Network (CNN). Still, there are not many researches for predicting diseases like CNV which stands for choroidal neovascularization, DME, which stands for Diabetic Macular Edema; and DRUSEN. In our research paper, the CNN (Convolutional Neural Networks) algorithm labeled the dataset of OCT retinal images into four types: CNV, DME, DRUSEN, and Natural Retina. We have also done several preprocessing on the images before passing these to the neural network. We have implemented different models for our algorithm where individual models have different hidden layers.  At the end of our following research, we have found that our algorithm CNN generates 93% accuracy.


Kantengwa, S., 2020. Origin of ordinary things: Scanner. The New Times, accessed 12 October 2021, Website:

Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B. and Sánchez, C.I., 2017. A survey on deep learning in medical image analysis. Medical Image Analysis, 42, pp.60-88. DOI:

Islam, J., Mubassira, M., Islam, M.R. and Das, A.K., 2019, February. A speech recognition system for Bengali language using recurrent neural network. In 2019 IEEE 4th international conference on computer and communication systems (ICCCS) (pp. 73-76). IEEE. DOI:

Mumu, T.F., Munni, I.J. and Das, A.K., 2021. Depressed people detection from bangla social media status using lstm and cnn approach. Journal of Engineering Advancements, 2(01), pp.41-47. DOI:

Hossain, M.T., Hasan, M.W. and Das, A.K., 2021, January. Bangla Handwritten Word Recognition System Using Convolutional Neural Network. In 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM) (pp. 1-8). IEEE. DOI:

Das, A.K., Ashrafi, A. and Ahmmad, M., 2019, February. Joint cognition of both human and machine for predicting criminal punishment in judicial system. In 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS) (pp. 36-40). IEEE. DOI:

De Fauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D. and van den Driessche, G., 2018. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), pp.1342-1350. DOI:

Xiao, Y., Wu, J., Lin, Z. and Zhao, X., 2018. A deep learning-based multi-model ensemble method for cancer prediction. Computer Methods and Programs in Biomedicine, 153, pp.1-9. DOI:

Weston, A.D., Korfiatis, P., Kline, T.L., Philbrick, K.A., Kostandy, P., Sakinis, T., Sugimoto, M., Takahashi, N. and Erickson, B.J., 2019. Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology, 290(3), pp.669-679. DOI:

Rakib, O.F., Akter, S., Khan, M.A., Das, A.K. and Habibullah, K.M., 2019, December. Bangla word prediction and sentence completion using GRU: an extended version of RNN on N-gram language model. In 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI) (pp. 1-6). IEEE. DOI:

Das, A.K., Al Asif, A., Paul, A. and Hossain, M.N., 2021. Bangla hate speech detection on social media using attention-based recurrent neural network. Journal of Intelligent Systems, 30(1), pp.578-591. DOI:

Hossain, M.M., Labib, M.F., Rifat, A.S., Das, A.K. and Mukta, M., 2019, June. Auto-correction of english to bengali transliteration system using levenshtein distance. In 2019 7th International Conference on Smart Computing & Communications (ICSCC) (pp. 1-5). IEEE. DOI:

Bombini, A., 2019. Using CNN to classify images w/PyTorch, Kaggle. accessed 12 October 2021, Website:

Ker, J., Wang, L., Rao, J. and Lim, T., 2017. Deep learning applications in medical image analysis. Ieee Access, 6, pp.9375-9389. DOI:

Kim, S.J., Cho, K.J. and Oh, S., 2017. Development of machine learning models for diagnosis of glaucoma. PloS one, 12(5), p.e0177726. DOI:

Lee, C.S., Baughman, D.M. and Lee, A.Y., 2017. Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmology Retina, 1(4), pp.322-327. DOI:

Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J. and Kim, R., 2016. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 316(22), pp.2402-2410. DOI:

Arunkumar, R. and Karthigaikumar, P., 2017. Multi-retinal disease classification by reduced deep learning features. Neural Computing and Applications, 28(2), pp.329-334. DOI:

Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C., Liang, H., Baxter, S.L., McKeown, A., Yang, G., Wu, X., Yan, F. and Dong, J., 2018. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), pp.1122-1131. DOI:

Grassmann, F., Mengelkamp, J., Brandl, C., Harsch, S., Zimmermann, M.E., Linkohr, B., Peters, A., Heid, I.M., Palm, C. and Weber, B.H., 2018. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology, 125(9), pp.1410-1420. DOI:

Abbas, Q., 2017. Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning. Int J Adv Comput Sci Appl, 8(6), pp.41-5. DOI:

Poplin, R., Varadarajan, A.V., Blumer, K., Liu, Y., McConnell, M.V., Corrado, G.S., Peng, L. and Webster, D.R., 2018. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2(3), pp.158-164. DOI:

Raman, R., Srinivasan, S., Virmani, S., Sivaprasad, S., Rao, C. and Rajalakshmi, R., 2019. Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye, 33(1), pp.97-109. DOI:

Sayres, R., Taly, A., Rahimy, E., Blumer, K., Coz, D., Hammel, N., Krause, J., Narayanaswamy, A., Rastegar, Z., Wu, D. and Xu, S., 2019. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology, 126(4), pp.552-564. DOI:

Schlegl, T., Waldstein, S.M., Bogunovic, H., Endstraßer, F., Sadeghipour, A., Philip, A.M., Podkowinski, D., Gerendas, B.S., Langs, G. and Schmidt-Erfurth, U., 2018. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology, 125(4), pp.549-558. DOI:

Ting, D.S.W., Cheung, C.Y.L., Lim, G., Tan, G.S.W., Quang, N.D., Gan, A., Hamzah, H., Garcia-Franco, R., San Yeo, I.Y., Lee, S.Y. and Wong, E.Y.M., 2017. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama, 318(22), pp.2211-2223. DOI:

Hasib, M.H., Sultana, T. and Chowdhury, C., 2020. Efficient image processing and machine learning approach for predicting retinal diseases (Doctoral dissertation, Brac University).

Bhuiyan, M., Rahman, A., Ullah, M. and Das, A.K., 2019. iHealthcare: Predictive model analysis concerning big data applications for interactive healthcare systems. Applied Sciences, 9(16), p.3365. DOI:

Labib, M.F., Rifat, A.S., Hossain, M.M., Das, A.K. and Nawrine, F., 2019, June. Road accident analysis and prediction of accident severity by using machine learning in Bangladesh. In 2019 7th International Conference on Smart Computing & Communications (ICSCC) (pp. 1-5). IEEE. DOI:

Thapa, D., Raahemifar, K. and Lakshminarayanan, V., 2015. Reduction of speckle noise from optical coherence tomography images using multi-frame weighted nuclear norm minimization method. Journal of Modern Optics, 62(21), pp.1856-1864. DOI:

Pamar, R., 2018. Demystifying Convolutional Neural Networks, towards data science, accessed 12 October 2021, Website:

Mooney, Paul.(2017, October). Retinal OCT Images (Optical Coherence Tomography), Version 2. accessed july 20,2021 , Website:

Ullah, M.R., Bhuiyan, M.A.R. and Das, A.K., 2017, September. IHEMHA: Interactive healthcare system design with emotion computing and medical history analysis. In 2017 6th International Conference on Informatics, Electronics and Vision & 2017 7th International Symposium in Computational Medical and Health Technology (ICIEV-ISCMHT) (pp. 1-8). IEEE. DOI:

Emon, E.A., Rahman, S., Banarjee, J., Das, A.K. and Mittra, T., 2019, June. A deep learning approach to detect abusive bengali text. In 2019 7th International Conference on Smart Computing & Communications (ICSCC) (pp. 1-5). IEEE. DOI:

Drovo, M.D., Chowdhury, M., Uday, S.I. and Das, A.K., 2019, June. Named entity recognition in bengali text using merged hidden markov model and rule base approach. In 2019 7th International Conference on Smart Computing & Communications (ICSCC) (pp. 1-5). IEEE. DOI:

Khan, M.S.S., Rafa, S.R. and Das, A.K., 2021. Sentiment Analysis on Bengali Facebook Comments To Predict Fan's Emotions Towards a Celebrity. Journal of Engineering Advancements, 2(03), pp.118-124. DOI:

Islam, S., Khan, S.I.A., Abedin, M.M., Habibullah, K.M. and Das, A.K., 2019, July. Bird species classification from an image using VGG-16 network. In Proceedings of the 2019 7th international conference on computer and communications management (pp. 38-42). DOI:



  • Abstract view341

How to Cite

Mohammad, A., Utso, M. Z., Habib, S. B., & Das, A. K. (2021). Predicting Retinal Diseases using Efficient Image Processing and Convolutional Neural Network (CNN). Journal of Engineering Advancements, 2(04), 221–227.



Research Articles