Predicting Retinal Diseases using Efficient Image Processing and Convolutional Neural Network (CNN)

Authors

  • Asif Mohammad Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh
  • Mahruf Zaman Utso Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh
  • Shifat Bin Habib Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh
  • Amit Kumar Das Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh

DOI:

https://doi.org/10.38032/jea.2021.04.008

Keywords:

Retinal Disease, Deep Learning, Image Processing, Neural Network, Convolutional Neural Network

Abstract

Neural networks in image processing are becoming a more crucial and integral part of machine learning as computational technology and hardware systems are advanced. Deep learning is also getting attention from the medical sector as it is a prominent process for classifying diseases.  There is a lot of research to predict retinal diseases using deep learning algorithms like Convolutional Neural Network (CNN). Still, there are not many researches for predicting diseases like CNV which stands for choroidal neovascularization, DME, which stands for Diabetic Macular Edema; and DRUSEN. In our research paper, the CNN (Convolutional Neural Networks) algorithm labeled the dataset of OCT retinal images into four types: CNV, DME, DRUSEN, and Natural Retina. We have also done several preprocessing on the images before passing these to the neural network. We have implemented different models for our algorithm where individual models have different hidden layers.  At the end of our following research, we have found that our algorithm CNN generates 93% accuracy.

References

Kantengwa, S., 2020. Origin of ordinary things: Scanner. The New Times, accessed 12 October 2021, Website: https://www.newtimes.co.rw/lifestyle/origin-ordinary-things-scanner

Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B. and Sánchez, C.I., 2017. A survey on deep learning in medical image analysis. Medical Image Analysis, 42, pp.60-88. DOI: https://doi.org/10.1016/j.media.2017.07.005

Islam, J., Mubassira, M., Islam, M.R. and Das, A.K., 2019, February. A speech recognition system for Bengali language using recurrent neural network. In 2019 IEEE 4th international conference on computer and communication systems (ICCCS) (pp. 73-76). IEEE. DOI: https://doi.org/10.1109/CCOMS.2019.8821629

Mumu, T.F., Munni, I.J. and Das, A.K., 2021. Depressed people detection from bangla social media status using lstm and cnn approach. Journal of Engineering Advancements, 2(01), pp.41-47. DOI: https://doi.org/10.38032/jea.2021.01.006

Hossain, M.T., Hasan, M.W. and Das, A.K., 2021, January. Bangla Handwritten Word Recognition System Using Convolutional Neural Network. In 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM) (pp. 1-8). IEEE. DOI: https://doi.org/10.1109/IMCOM51814.2021.9377410

Das, A.K., Ashrafi, A. and Ahmmad, M., 2019, February. Joint cognition of both human and machine for predicting criminal punishment in judicial system. In 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS) (pp. 36-40). IEEE. DOI: https://doi.org/10.1109/CCOMS.2019.8821655

De Fauw, J., Ledsam, J.R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., Askham, H., Glorot, X., O’Donoghue, B., Visentin, D. and van den Driessche, G., 2018. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), pp.1342-1350. DOI: https://doi.org/10.1038/s41591-018-0107-6

Xiao, Y., Wu, J., Lin, Z. and Zhao, X., 2018. A deep learning-based multi-model ensemble method for cancer prediction. Computer Methods and Programs in Biomedicine, 153, pp.1-9. DOI: https://doi.org/10.1016/j.cmpb.2017.09.005

Weston, A.D., Korfiatis, P., Kline, T.L., Philbrick, K.A., Kostandy, P., Sakinis, T., Sugimoto, M., Takahashi, N. and Erickson, B.J., 2019. Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology, 290(3), pp.669-679. DOI: https://doi.org/10.1148/radiol.2018181432

Rakib, O.F., Akter, S., Khan, M.A., Das, A.K. and Habibullah, K.M., 2019, December. Bangla word prediction and sentence completion using GRU: an extended version of RNN on N-gram language model. In 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI) (pp. 1-6). IEEE. DOI: https://doi.org/10.1109/STI47673.2019.9068063

Das, A.K., Al Asif, A., Paul, A. and Hossain, M.N., 2021. Bangla hate speech detection on social media using attention-based recurrent neural network. Journal of Intelligent Systems, 30(1), pp.578-591. DOI: https://doi.org/10.1515/jisys-2020-0060

Hossain, M.M., Labib, M.F., Rifat, A.S., Das, A.K. and Mukta, M., 2019, June. Auto-correction of english to bengali transliteration system using levenshtein distance. In 2019 7th International Conference on Smart Computing & Communications (ICSCC) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/ICSCC.2019.8843613

Bombini, A., 2019. Using CNN to classify images w/PyTorch, Kaggle. accessed 12 October 2021, Website: https://www.kaggle.com/androbomb/using-cnn-to-classify-images-w-pytorch

Ker, J., Wang, L., Rao, J. and Lim, T., 2017. Deep learning applications in medical image analysis. Ieee Access, 6, pp.9375-9389. DOI: https://doi.org/10.1109/ACCESS.2017.2788044

Kim, S.J., Cho, K.J. and Oh, S., 2017. Development of machine learning models for diagnosis of glaucoma. PloS one, 12(5), p.e0177726. DOI: https://doi.org/10.1371/journal.pone.0177726

Lee, C.S., Baughman, D.M. and Lee, A.Y., 2017. Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmology Retina, 1(4), pp.322-327. DOI: https://doi.org/10.1016/j.oret.2016.12.009

Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J. and Kim, R., 2016. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 316(22), pp.2402-2410. DOI: https://doi.org/10.1001/jama.2016.17216

Arunkumar, R. and Karthigaikumar, P., 2017. Multi-retinal disease classification by reduced deep learning features. Neural Computing and Applications, 28(2), pp.329-334. DOI: https://doi.org/10.1007/s00521-015-2059-9

Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C., Liang, H., Baxter, S.L., McKeown, A., Yang, G., Wu, X., Yan, F. and Dong, J., 2018. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 172(5), pp.1122-1131. DOI: https://doi.org/10.1016/j.cell.2018.02.010

Grassmann, F., Mengelkamp, J., Brandl, C., Harsch, S., Zimmermann, M.E., Linkohr, B., Peters, A., Heid, I.M., Palm, C. and Weber, B.H., 2018. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology, 125(9), pp.1410-1420. DOI: https://doi.org/10.1016/j.ophtha.2018.02.037

Abbas, Q., 2017. Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning. Int J Adv Comput Sci Appl, 8(6), pp.41-5. DOI: https://doi.org/10.14569/IJACSA.2017.080606

Poplin, R., Varadarajan, A.V., Blumer, K., Liu, Y., McConnell, M.V., Corrado, G.S., Peng, L. and Webster, D.R., 2018. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2(3), pp.158-164. DOI: https://doi.org/10.1038/s41551-018-0195-0

Raman, R., Srinivasan, S., Virmani, S., Sivaprasad, S., Rao, C. and Rajalakshmi, R., 2019. Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye, 33(1), pp.97-109. DOI: https://doi.org/10.1038/s41433-018-0269-y

Sayres, R., Taly, A., Rahimy, E., Blumer, K., Coz, D., Hammel, N., Krause, J., Narayanaswamy, A., Rastegar, Z., Wu, D. and Xu, S., 2019. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology, 126(4), pp.552-564. DOI: https://doi.org/10.1016/j.ophtha.2018.11.016

Schlegl, T., Waldstein, S.M., Bogunovic, H., Endstraßer, F., Sadeghipour, A., Philip, A.M., Podkowinski, D., Gerendas, B.S., Langs, G. and Schmidt-Erfurth, U., 2018. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology, 125(4), pp.549-558. DOI: https://doi.org/10.1016/j.ophtha.2017.10.031

Ting, D.S.W., Cheung, C.Y.L., Lim, G., Tan, G.S.W., Quang, N.D., Gan, A., Hamzah, H., Garcia-Franco, R., San Yeo, I.Y., Lee, S.Y. and Wong, E.Y.M., 2017. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama, 318(22), pp.2211-2223. DOI: https://doi.org/10.1001/jama.2017.18152

Hasib, M.H., Sultana, T. and Chowdhury, C., 2020. Efficient image processing and machine learning approach for predicting retinal diseases (Doctoral dissertation, Brac University).

Bhuiyan, M., Rahman, A., Ullah, M. and Das, A.K., 2019. iHealthcare: Predictive model analysis concerning big data applications for interactive healthcare systems. Applied Sciences, 9(16), p.3365. DOI: https://doi.org/10.3390/app9163365

Labib, M.F., Rifat, A.S., Hossain, M.M., Das, A.K. and Nawrine, F., 2019, June. Road accident analysis and prediction of accident severity by using machine learning in Bangladesh. In 2019 7th International Conference on Smart Computing & Communications (ICSCC) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/ICSCC.2019.8843640

Thapa, D., Raahemifar, K. and Lakshminarayanan, V., 2015. Reduction of speckle noise from optical coherence tomography images using multi-frame weighted nuclear norm minimization method. Journal of Modern Optics, 62(21), pp.1856-1864. DOI: https://doi.org/10.1080/09500340.2015.1068392

Pamar, R., 2018. Demystifying Convolutional Neural Networks, towards data science, accessed 12 October 2021, Website: https://towardsdatascience.com/demystifying-convolutional-neural-networks-384785791596.

Mooney, Paul.(2017, October). Retinal OCT Images (Optical Coherence Tomography), Version 2. accessed july 20,2021 , Website: www.kaggle.com/paultimothymooney/kermany2018.

Ullah, M.R., Bhuiyan, M.A.R. and Das, A.K., 2017, September. IHEMHA: Interactive healthcare system design with emotion computing and medical history analysis. In 2017 6th International Conference on Informatics, Electronics and Vision & 2017 7th International Symposium in Computational Medical and Health Technology (ICIEV-ISCMHT) (pp. 1-8). IEEE. DOI: https://doi.org/10.1109/ICIEV.2017.8338606

Emon, E.A., Rahman, S., Banarjee, J., Das, A.K. and Mittra, T., 2019, June. A deep learning approach to detect abusive bengali text. In 2019 7th International Conference on Smart Computing & Communications (ICSCC) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/ICSCC.2019.8843606

Drovo, M.D., Chowdhury, M., Uday, S.I. and Das, A.K., 2019, June. Named entity recognition in bengali text using merged hidden markov model and rule base approach. In 2019 7th International Conference on Smart Computing & Communications (ICSCC) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/ICSCC.2019.8843661

Khan, M.S.S., Rafa, S.R. and Das, A.K., 2021. Sentiment Analysis on Bengali Facebook Comments To Predict Fan's Emotions Towards a Celebrity. Journal of Engineering Advancements, 2(03), pp.118-124. DOI: https://doi.org/10.38032/jea.2021.03.001

Islam, S., Khan, S.I.A., Abedin, M.M., Habibullah, K.M. and Das, A.K., 2019, July. Bird species classification from an image using VGG-16 network. In Proceedings of the 2019 7th international conference on computer and communications management (pp. 38-42). DOI: https://doi.org/10.1145/3348445.3348480

Downloads

Published

27-12-2021
  • Abstract view379

How to Cite

Mohammad, A., Utso, M. Z., Habib, S. B., & Das, A. K. (2021). Predicting Retinal Diseases using Efficient Image Processing and Convolutional Neural Network (CNN). Journal of Engineering Advancements, 2(04), 221–227. https://doi.org/10.38032/jea.2021.04.008
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Research Articles
فروشگاه اینترنتی صندلی اداری