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ABSTRACT 

Determining accurate future production in the oil and gas industry is increasingly challenging with traditional methods. Decline 

Curve Analysis often fails to provide precise results, while Reservoir Simulation Models require detailed parameters and are time-

consuming due to the constantly changing reservoir conditions during the production period. Today, industries are leveraging 

machine learning and extensive data from oil wells for predictive purposes, can significantly reduce operational costs and minimize 

negative environmental impacts. This study aims to predict future production using machine learning algorithms. Specifically, 

Gradient Boosting Regression, Light Gradient Boosting Regression, and Extreme Gradient Boosting Regression models were 

developed using the production dataset of the Norwegian Volve oil field (well NO159F-11H) within 12 parameters. These models 

were trained on 80% of the dataset, while the remaining 20% was reserved for testing purposes. The accuracy of the models was 

assessed using the coefficient of determination (R²), which was found to be 99% for both training and testing data across all models. 

GBR demonstrated the lowest mean absolute error (MAE = 12.810) and root mean square error (RMSE = 17.802) compared to the 

other two models based on testing value. On the other hand, based on training dataset, XGBoost showed the lowest MAE (1.192) 

and RMSE (1.671) values. However, the results for well NO159 F-11H show that GBR outperformed the other two methods but 

this doesn't imply that GBR is always better than XGBoost or LightGBR in all cases. An extensive study was conducted to evaluate 

the predictive performance of these models, with systematic assessments and hyperparameter adjustments to reliably anticipate the 

well's performance. 
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1. Introduction 

Hydrocarbon production forecasting involves estimating 

the final recoveries and well life to make decisions in the oil 

and gas sector, which are essential for flow maintenance and 

workover plans, future planning, and production/injection 

situations. Accurate production estimation is difficult to 

achieve because of several factors, including uncertain and 

complicated reservoir structures, changes in fluid properties 

and dynamic production behaviour [1]. Several methods to 

determine traditional production forecasting include 

volumetric, material balance, DCA and RSA. Each method 

requires different types of data for production forecasting and 

has also limitations that why different models are used for 

different reservoirs [2].  

DCA is useful for conventional reservoirs, fitting decline 

curves to historical production data. However, it's less suitable 

for unconventional reservoirs due to inaccurate and missing 

data. RSA is a sophisticated tool for predicting HC production, 

based on extensive data including geological features, well 

parameters, fluid properties, and historical production data. 

Compare DCA & RSA with Machine learning (ML) 

approach, nowadays, ML techniques are increasingly being 

used in the oil and gas production industry, replacing DCA 

and RSA for short-term forecasting. DCA is used for short-

term forecasting but cannot provide accurate results for long-

term predictions due to its reliance on production history data 

and production rate. [3]. On the other hand, RSA requires a 

lot of reservoir formation data, which is not always available. 

In a reservoir, initial conditions are not constant all the time, 

day by day pressure, temperature, volume and other 

parameters change with daily production & injection [4]. 

That’s why need updating the simulation model through 

history matching becomes essential for maintaining 

prediction accuracy when real-time data becomes accessible. 

As time progresses, the gathering of huge amounts of data 

becomes a big issue, since the model's rising complexity 

makes accuracy increasingly difficult to maintain [5]. ML 

models can effectively capture intricate interactions among 

various production-influencing factors, which traditional 

methods may struggle to handle. 

Research has indicated that ML is a useful tool for 

identifying subtle connections between multiple factors that 

affect the production of crude gas and oil [6]. Both long-term 

forecasting and short-term monitoring can benefit from these 

approaches' superior ability to capture complicated reservoir 

dynamics, resulting in more precise forecasts [1]. However, 

ML models have limitations that need to be understood for 

reliable predictions. An important limitation is that most of 

the ML models are heavily reliant on large volumes of 

quality data. Poor datasets bring down the accuracy level in 

predictions. Also, there is a high tendency of ML models to 

overfit the training dataset, performing well on seen 

conditions but poorly on unseen ones. Furthermore, HC 

production potential from newly discovered wells has been 

predicted using competitive-learning-based networks, 

proving the flexibility of ML in solving particular problems. 
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Additionally, the productivity of shale gas reservoirs has 

been actively analyzed through the use of ML approaches [6]. 

 

 2. Literature Review 

There are many researchers are work on a lot of machine 

learning model techniques in petroleum engineering sector 

and production prediction is one of them. There are a lot of 

machine learning algorithm but all of them are not perfectly 

work on the oil and gas reservoir [9]. Some of them are 

provide good accuracy for gas reservoir and some are for oil 

reservoir. 

Q. Cao et al. (2016) focused on data-driven production 

forecasting using Deep Learning (DL) model, Artificial 

Neural Networks (ANN) to predicted the production 

forecasting for existing and new wells using geological data 

and past production data. They challenged that the model 

was better for efficient well placement and production 

estimation than traditional well evaluation processes [8]. 

Pejman Shoeibi Omrani et al. (2019) discussed deep 

learning and hybrid approaches applied to short and long-

term production forecasting, utilizing different gas field data 

between a few weeks to several years. The models they 

employed DCA, Physical model (IPR+VLP), ANN, and 

Hybrid approach based on Short-term forecasts, Mid-term 

forecasts & Long-term forecasts. The best accuracy was 

shown by the ANN model including choke opening 

information for both 6-month and 1-year production 

forecasts [1]. 

Cheng Zhan et al. (2019) identified that Long Short-

Term Memory (LSTM) method for production forecasting in 

unconventional resources, requiring minimal historical data. 

A total of 300 wells with over two years of production 

history were selected, and the first three months of data were 

utilized to train the model and forecast output for the next 

twenty-one months [7]. 

Maryam Bagheri et al. (2020) presented new ML 

techniques such as MLP and SVR for predicting missing data, 

PCA for identify the essential features and LSTM & SVR for 

production prediction. In that work, 6% of outliers were 

eliminated, and over 60% of the anomalous and missing data 

is effectively identified and imputed [2]. 

Eduardo Andrés Muñoz Vélez (2020)  utilised ANN and 

GB algorithms to create a model for selecting the optimal 

EOR method and predicting heavy oil production. They 

predicted that the model could be experienced for the gas 

industry [8]. 

A complete ML technique for forecasting shale gas 

production using geological and operational factors was 

developed by Gang Hui (2021). As input variables, there are 

13 geological and operational factors derived from well 

logging, core experiment, and treatment data; the target 

variable has been set to be the 12-month shale gas production, 

predicted the production forecast using NN, Extra Trees, 

GBDT, and LR [6]. 

 

2.1 Summary and Implications 

The discussion provides good knowledge about future 

production prediction with ML and DL approach. But all 

models do not apply to any type of reservoir because the 

parameters and conditions of conventional and 

unconventional reservoirs are not the same due to geologic 

features and formation conditions. The authors figure out in 

their research which model provides the best accuracy for 

future prediction by taking other reservoir parameters. 

Normally, when dealing with massive data in the production 

phase, we occasionally are unable to decipher the 

information extracted from the data after seeing it and 

appropriate AI models are used in the situation [9]. However, 

DL models are trained using very large and complex data so 

that the model may not overfit. Computationally expensive, 

it takes a lot of time while training, and requires special 

hardware. DL techniques can be better applied to 

unstructured data, like images or text. While comprehensive, 

the dataset used in this study does not meet the size and 

complexity required to fully utilize the potential of deep 

learning models. Considering all the statements from 

different points of view, selecting Gradient Boosting 

regression (GBR), Extreme Gradient Boosting Regression 

(XGBoost) and Light Gradient Boosting Regression 

(LightGBR) models to fulfill the purpose of this study. These 

models fit small datasets, and hence this research will use 

these types of models. Boosting models can also be used in 

showing feature importance, which is very vital for 

interpretability in oil and gas studies where clear results 

guide decisions. They are computationally efficient, taking 

less time and resources compared to DL models. The main 

purpose of this study is to conduct a comparative study based 

on evaluation and identify the best predictive performance 

model for production forecasting. Based on an 8:2 ratio, the 

data points are separated into two sets: the training set and 

the testing set. This suggests that 10713 of the 13392 data 

points will be used to train the data-driven models, while the 

other 2679 data points will be used for training purposes in 

order to evaluate models' prediction capabilities. 

 

3. Methodology 

Data preparation is an essential stage in data analysis 

processes. It includes handling missing data, data cleaning, 

feature selection, and normalization to make raw data more 

appropriate for analysis. It is necessary to remove 

unnecessary observations, correct structural flaws, and 

manage undesired outliers [10]. Here, a working flow 

diagram is drawn in Fig.1 to understand the working flow of 

the selective model. The selective three model methodology 

are described below. 
 

 
 

Fig.1 Working Flow Diagram 
 

3.1 Gradient Boosting Regression (GBR) 

GBR is a powerful ML technique that has been used for 

regression tasks. The principle behind it is to combine 
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several weak learners, usually decision trees, into a strong 

predictive model. The process initiates with an initializing 

simple model having an average prediction of the target 

variable. Further, it defines the loss function that quantifies 

error in the prediction. In each round, a weak learner is 

fitted to predict the residuals and the overall model is 

updated by adding the predictions of the new learner to the 

existing model, controlled by a learning rate parameter. 

This continues for some predefined number of iterations or 

until performance on some holdout validation set stops 

improving [11]. GBR 𝐹𝑛(𝑥𝑡)  is defined as the sum of n 

regression trees. 
 

                          𝐹𝑛(𝑥𝑡) =  ∑ 𝑓𝑖(𝑥𝑡)𝑛
𝑖=1                           (1) 

 

where every 𝑓𝑖(𝑥𝑡) is a regression tree. The succession of 

trees is constructed successively by estimating the new 

regression tree 𝑓𝑛+1(𝑥𝑡) using the equation below: 

            

  𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑡 . 𝐹𝑛(𝑥𝑡) + 𝑓𝑛+1(𝑥𝑡))𝑡                      (2) 

 

Where 𝐿(. ) is differentiable for loss-function 𝐿(. ). 
 

 
 

Fig.2 Working flow diagram of GBR model. 

 

3.2 Light Gradient Boosting Regression (LightGBR) 

LightGBM is a gradient boosting decision tree 

algorithm applied for classification, regression, and ranking 

tasks. It is very good at residual value modeling and 

prediction with high accuracy and efficiency, preferred in 

those machine learning applications that need precision data 

processing. The two most important techniques involved in 

this algorithm to boost the performance are the Gradient-

Based One-Side Sampling (GOSS) and Exclusive Feature 

Bundling (EFB) [12]. These combined methods make the 

outputs of LightGBM fast and accurate. It will be capable of 

handling big data, maintaining parallelism, and ensuring 

satisfactory accuracy [13].  
 

 
 

Fig.3 Leaf-wise tree growth in LightGBR 

 

LightGBR ensembles multiple weak regressors to make 

one strong regressor, where each weak regressor represents 

distinct features, which lets us know how much each feature 

is affecting the prediction result. Due to this reason, 

LightGBR has very good interpretability. 

 

3.3 Extreme Gradient Boosting Regression (XGBoost) 

XGBoost is a ML approach to solve regression and 

classification problems by using a predictive model in the 

form of a decision tree. It can be distinguished among 

various implementations of Tree Gradient Boosting [14]. 

 
 

Fig.4 Basic structure of XGBoost tree model. 

 

The main idea in XGBoost is an extension of the basic 

boosting idea, namely iteratively adding weak trees with 

different weights while improving the model step by step. 

The set of trees must approach the residuals of the past 

forecast as much as feasible, which is shown as follows. 
 

                      𝑦𝑡̂ = ∑ 𝑓𝑘(𝑥𝑖)
𝑘
𝑘=1             𝑓𝑘 ∈ 𝐹                   (3) 

 

where F is the function space that contains all of the 

regression trees, 𝑥𝑖 is the i-th training sample, and 𝑓𝑘 is the 

score for the k-th tree. It is anticipated that the projected 

value 𝑦𝑡̂  will approximate the genuine value𝑦𝑡  to the greatest 

extent feasible while maintaining its capacity for 

generalization [15]. Below is the formula to calculate 

objective (L). 
 

           𝐿 = ∑ 𝑙(𝑦𝑖 , 𝑦̂𝑖
(𝑡)

)𝑛
𝑖=1 + ∑ Ω(𝑓𝑡)𝑡

𝑖=1 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (4) 
 

The loss function, or difference between the predicted 

and true values, is represented by 𝑙(𝑦𝑖 , 𝑦̂𝑖
(𝑡)

) in the equation. 

It can be Any second-order derivable loss function can be 

used. Ω(𝑓𝑡) defines the complexity of the model. The 

complexity decreases and the generalization ability increases 

with a decreasing value of Ω(𝑓𝑡). 
 

                            Ω(𝑓𝑡) =  𝛾Τ +
1

2
𝜆‖𝜔‖2                         (5) 

 

Where 𝛾 and 𝜆 are constant coefficients, Τ controls number 

of tree leaves, 𝜔  controls the score of each leaf. Since 

XGBoost extends the loss function using second order 

approximation and eliminates the constant component to 

obtain the simplest goal [16]. As a result, XGBoost is flexible 

enough to handle many issues and allows faster operation 

speed and significantly shorter training time. 

 

3.4 Model Performance Matrix 

Here, we calculate R-square value (R2),  Mean absolute 

error (MAE),  Root mean squared error (RMSE) to identify 

the model performance. 
 

                      𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑛
𝑖=1

                       (6)  

 

                      𝑀𝐴𝐸 = 
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛
𝑖=1                        (7) 

 

                     𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                 (8) 

  
4. Result and Discussion 

The dataset used for predict production in this study is 

oil production data (well NO159F-11H) of Volvo oil field in 

Norwegian region. The including parameter are recorded 

date, on_steam hour, average downhole pressure & 
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temperature, average differential pressure tubing & annulus 

pressure, average Choke-size percentage, average wellhead 

pressure and temperature, choke-size, produced oil, gas & 

water volume.  

Data visualization of machine learning to represent how 

dataset are correlated with each other. It helps us to identify 

which parameter and how much influence to the target 

feature. A data visualization technique called heat-map by 

Fig.5 to identify the correlation between the input feature to 

target feature. From heat-map analysis, we can see that the 

value of coefficient is 0.99 for bore gas volume represent 

highly correlated with bore oil volume. But bore water 

volume in not highly correlated with bore oil volume because 

of -0.35 coefficient value. 
 

 
 

Fig.5 Heat-map representation of correlation between all 

data-point. 
 

 
 

Fig.6 Important feature identification. 

 

To improve model performance, feature importance 

helps to identify the most important relevant feature from the 

data set. Due to highly correlated gas production with oil 

that’s why it’s not taken into importance identification. This 

technique helps us to determine the accurate prediction and 

desired output. The feature importance graph is shown in the 

Fig.6. Here, Fig.6 showed importance is almost zero for 

average annulus pressure indicating the zero contribution to 

the oil production from the reservoir. 

 

Table 1 Evaluation Parameter of three models for training 

and testing datasets. 
Datasets Matrix GBR LightGBR XGBoost 

 

Training 

R2 0.9999 0.9998 0.9999 

RMSE 2.577 5.621 1.671 

MAE 2.042 3.635 1.192 

 

Testing 

R2 0.9978 0.9977 0.9974 

RMSE 17.802 18.512 19.534 

MAE 12.810 13.306 13.925 

The performance matrix of three models are listed in 

Table 1. The table is represented that all model are strongly 

performed during the training and testing time. The R-square 

value was found approximately 99 percent for three models 

on both training and testing dataset. 

The cross-plots comparing actual and predicted oil 

production for GBR, LightGBR, and XGBoost are shown in 

Figures 7a, 7b, and 7c, respectively. The red dashed line 

represents a 45° slope, indicating the ideal line of perfect 

predictions for all three models. In general, most data points 

align closely with this line, showing high accuracy across the 

models. 
 

 
Fig.7a Cross-plot of actual vs predicted oil production for 

training and testing dataset (GBR) 
 

 
Fig.7b Cross-plot of actual vs predicted oil production for 

training and testing dataset (LightGBR) 
 

 
Fig.7c Cross-plot of actual vs predicted oil production for 

training and testing dataset (XGBoost) 

In Figures 7a–7c, the training data points are mostly 

aligned along the 45° line, which indicates strong training 

performance for all three models with minimal over- or 

underestimation. However, Figure 7c (XGBoost) shows a 

few outliers in the testing data, where some predictions are 

underestimated - the points that lie below the perfect 

prediction line and some are overestimated - the points that 

lie above the perfect prediction line. Although these outliers 

slightly impact XGBoost’s overall testing performance, they 
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do not significantly affect the model's reliability compared to 

GBR and LightGBR. Overall, the cross-plots confirm that 

the training and testing performance of all three models is 

excellent, with no significant outliers detected. 

 

 

Fig.8a Epoch vs Cost curve for the GBR 
 

 

Fig.8b Epoch vs Cost curve for the LightGBR 
 

 

Fig.8c Epoch vs Cost curve for the XGBoost 
 

GBR, LightGBR, and XGBoost learning curves 

(Figures 8a−8c respectively) show clear trends in model 

performance over time. Mean Squared Error (MSE) 

decreases quickly in the first epochs for all three models, 

then plateaus as the models converge. The training and 

testing curves are well aligned, and GBR has the lowest final 

MSE, indicating the best generalization. Contrarily, 

LightGBM demonstrates a fast reduction in errors in the 

early epochs and competitive performance in the end, 

indicating its superior learning speed. Despite being more 

effective than the other two models, XGBoost converges 

more slowly and has higher MSE values. 

The bar graph in Fig.9 illustrates the performance of 

different models and helps identify the best model for this 

dataset. The difference between the training and testing R-

squared values for both GBR) and LightGBM is 0.0021, 

which is smaller than that observed for XGBoost. However, 

XGBoost achieves the lowest RMSE and MAE during the 

training phase. In contrast, GBR demonstrates the lowest 

RMSE and MAE during the testing phase. The Difference in 

the R-square value for the training and testing dataset is very 

low, which indicates that these models are run without 

overfitting. 

 
 

Fig.9 Visualization of Evaluation parameters 
 

The consistent performance of the GBR model across both 

training and testing sets highlights its robustness and 

reliability is understood from this figure. 

Optimum hyper-parameter tuning like grid search 

algorithm are used in this study which help to identify this 

best performance. The hyper-parameter tuning listed on 

Table 2 and their corresponding value. 
 

Table 2 Hyper-parameter tuning of three models. 
Hyper-

parameter 

Tuning 

 

GBR 

 

LightGBR 

 

XGBoost 

objective  regression Squared_error 

loss Squared_error   

n_estimators 220 300 70 

Learning_rate 0.2 0.2 0.3 

max_depth 4 7 7 
 

To compare the models' predictability, Fig.10 display 

the actual versus predicted oil production.  
 

 
 

Fig.10 Comparison of actual and predicted oil production 

for three models. 
 

In these figures, the black line represents actual oil 

production, while the three dashes-colored lines represent 

the predicted oil production from three different models 

respectively, based on daily records. Upon close 

examination, the predicted lines almost overlap with the 

actual production line. However, a deeper analysis reveals 

fluctuations between the actual and predicted lines. The GBR 

model shows the least fluctuation, whereas the LightGBR 

and XGBoost models exhibit the more. Based on this 

comparison, we can conclude that the GBR model is the most 

accurate for this dataset. 

 

5. Conclusion  

In this paper, the primary goal was to identify the best 

ML technique for predicting oil production using historical 

data and key input parameters. The analysis of GBR, 

LightGBR, and XGBoost models reveals their strengths and 

limitations in predicting oil production. The heat-map 

analysis shows a high correlation between bore gas volume 
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and oil volume, while bore water volume shows a low 

correlation. GBR and LightGBR show strong training and 

testing performance, achieving approximately 99% R-

squared values. Cross-plots show high accuracy with GBR 

and LightGBR aligning closely with the ideal 45° line. 

XGBoost, while accurate, has some outliers where 

predictions are slightly underestimated or overestimated, 

affecting its reliability. Learning curve analysis reveals that 

GBR achieves the lowest final MSE, showcasing excellent 

generalization. LightGBR demonstrates rapid initial error 

reduction and competitive performance, indicating its 

superior learning speed. XGBoost converges more slowly 

and has higher MSE values, reflecting a need for more tuning 

to enhance generalization. GBR is the most reliable model 

due to its superior testing accuracy, robust generalization, 

and stable predictions, while XGBoost has higher testing 

RMSE. Therefore, GBR is recommended as the best model 

for predicting oil production.  
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NOMENCLATURE 

OSH 

ADP 

ADT 

ADPT  

AAP 

ACS 

AWP 

AWT 

DPCS 

BGV 

BWV 

BOV 

NN 

GBDT 

LR 

GBR 

LightGBR 

XGBoost  

: On Steam Hour, hour 

: Average Downhole Pressure, bar 

: Average Downhole Temperature, oC 

: Average Differential Pressure Tubing, bar 

: Average Annulus Pressure, bar 

: Average Choke-Size 

: Average Wellhead Pressure, oC 

: Average Wellhead Temperature, oC 

: Differential Pressure Choke-Size 

: Bore Gas Volume, sm3/days 

: Bore Water Volume, sm3/days 

: Bore Oil Volume, sm3/days 

: Neural Network. 

: Gradient Boosting Decision Tree. 

: Liner Regression 

: Gradient Boosting Regression 

: Light Gradient Boosting Regression 

: Extreme Gradient Boosting Regression 

 

 

 

 

 


