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ABSTRACT

Determining accurate future production in the oil and gas industry is increasingly challenging with traditional methods. Decline
Curve Analysis often fails to provide precise results, while Reservoir Simulation Models require detailed parameters and are time-
consuming due to the constantly changing reservoir conditions during the production period. Today, industries are leveraging
machine learning and extensive data from oil wells for predictive purposes, can significantly reduce operational costs and minimize
negative environmental impacts. This study aims to predict future production using machine learning algorithms. Specifically,
Gradient Boosting Regression, Light Gradient Boosting Regression, and Extreme Gradient Boosting Regression models were
developed using the production dataset of the Norwegian Volve oil field (well NO159F-11H) within 12 parameters. These models
were trained on 80% of the dataset, while the remaining 20% was reserved for testing purposes. The accuracy of the models was
assessed using the coefficient of determination (R?), which was found to be 99% for both training and testing data across all models.
GBR demonstrated the lowest mean absolute error (MAE = 12.810) and root mean square error (RMSE = 17.802) compared to the
other two models based on testing value. On the other hand, based on training dataset, XGBoost showed the lowest MAE (1.192)
and RMSE (1.671) values. However, the results for well NO159 F-11H show that GBR outperformed the other two methods but
this doesn't imply that GBR is always better than XGBoost or LightGBR in all cases. An extensive study was conducted to evaluate
the predictive performance of these models, with systematic assessments and hyperparameter adjustments to reliably anticipate the
well's performance.
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1. Introduction

Hydrocarbon production forecasting involves estimating
the final recoveries and well life to make decisions in the oil
and gas sector, which are essential for flow maintenance and
workover plans, future planning, and production/injection
situations. Accurate production estimation is difficult to
achieve because of several factors, including uncertain and
complicated reservoir structures, changes in fluid properties
and dynamic production behaviour [1]. Several methods to
determine traditional production forecasting include
volumetric, material balance, DCA and RSA. Each method
requires different types of data for production forecasting and
has also limitations that why different models are used for
different reservoirs [2].

DCA is useful for conventional reservoirs, fitting decline
curves to historical production data. However, it's less suitable
for unconventional reservoirs due to inaccurate and missing
data. RSA is a sophisticated tool for predicting HC production,
based on extensive data including geological features, well
parameters, fluid properties, and historical production data.

Compare DCA & RSA with Machine learning (ML)
approach, nowadays, ML techniques are increasingly being
used in the oil and gas production industry, replacing DCA
and RSA for short-term forecasting. DCA is used for short-
term forecasting but cannot provide accurate results for long-
term predictions due to its reliance on production history data
and production rate. [3]. On the other hand, RSA requires a
lot of reservoir formation data, which is not always available.

In a reservoir, initial conditions are not constant all the time,
day by day pressure, temperature, volume and other
parameters change with daily production & injection [4].
That’s why need updating the simulation model through
history matching becomes essential for maintaining
prediction accuracy when real-time data becomes accessible.
As time progresses, the gathering of huge amounts of data
becomes a big issue, since the model's rising complexity
makes accuracy increasingly difficult to maintain [5]. ML
models can effectively capture intricate interactions among
various production-influencing factors, which traditional
methods may struggle to handle.

Research has indicated that ML is a useful tool for
identifying subtle connections between multiple factors that
affect the production of crude gas and oil [6]. Both long-term
forecasting and short-term monitoring can benefit from these
approaches' superior ability to capture complicated reservoir
dynamics, resulting in more precise forecasts [1]. However,
ML models have limitations that need to be understood for
reliable predictions. An important limitation is that most of
the ML models are heavily reliant on large volumes of
quality data. Poor datasets bring down the accuracy level in
predictions. Also, there is a high tendency of ML models to
overfit the training dataset, performing well on seen
conditions but poorly on unseen ones. Furthermore, HC
production potential from newly discovered wells has been
predicted using competitive-learning-based networks,
proving the flexibility of ML in solving particular problems.
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Additionally, the productivity of shale gas reservoirs has

been actively analyzed through the use of ML approaches [6].

2. Literature Review

There are many researchers are work on a lot of machine
learning model techniques in petroleum engineering sector
and production prediction is one of them. There are a lot of
machine learning algorithm but all of them are not perfectly
work on the oil and gas reservoir [9]. Some of them are
provide good accuracy for gas reservoir and some are for oil
reservoir.

Q. Cao et al. (2016) focused on data-driven production
forecasting using Deep Learning (DL) model, Artificial
Neural Networks (ANN) to predicted the production
forecasting for existing and new wells using geological data
and past production data. They challenged that the model
was better for efficient well placement and production
estimation than traditional well evaluation processes [8].

Pejman Shoeibi Omrani et al. (2019) discussed deep
learning and hybrid approaches applied to short and long-
term production forecasting, utilizing different gas field data
between a few weeks to several years. The models they
employed DCA, Physical model (IPR+VLP), ANN, and
Hybrid approach based on Short-term forecasts, Mid-term
forecasts & Long-term forecasts. The best accuracy was
shown by the ANN model including choke opening
information for both 6-month and 1-year production
forecasts [1].

Cheng Zhan et al. (2019) identified that Long Short-
Term Memory (LSTM) method for production forecasting in
unconventional resources, requiring minimal historical data.
A total of 300 wells with over two years of production
history were selected, and the first three months of data were
utilized to train the model and forecast output for the next
twenty-one months [7].

Maryam Bagheri et al. (2020) presented new ML
techniques such as MLP and SVR for predicting missing data,
PCA for identify the essential features and LSTM & SVR for
production prediction. In that work, 6% of outliers were
eliminated, and over 60% of the anomalous and missing data
is effectively identified and imputed [2].

Eduardo Andrés Mufioz Vélez (2020) utilised ANN and
GB algorithms to create a model for selecting the optimal
EOR method and predicting heavy oil production. They
predicted that the model could be experienced for the gas
industry [8].

A complete ML technique for forecasting shale gas
production using geological and operational factors was
developed by Gang Hui (2021). As input variables, there are
13 geological and operational factors derived from well
logging, core experiment, and treatment data; the target
variable has been set to be the 12-month shale gas production,
predicted the production forecast using NN, Extra Trees,
GBDT, and LR [6].

2.1 Summary and Implications

The discussion provides good knowledge about future
production prediction with ML and DL approach. But all
models do not apply to any type of reservoir because the
parameters and conditions of conventional and
unconventional reservoirs are not the same due to geologic
features and formation conditions. The authors figure out in
their research which model provides the best accuracy for
future prediction by taking other reservoir parameters.
Normally, when dealing with massive data in the production

phase, we occasionally are unable to decipher the
information extracted from the data after seeing it and
appropriate Al models are used in the situation [9]. However,
DL models are trained using very large and complex data so
that the model may not overfit. Computationally expensive,
it takes a lot of time while training, and requires special
hardware. DL techniques can be better applied to
unstructured data, like images or text. While comprehensive,
the dataset used in this study does not meet the size and
complexity required to fully utilize the potential of deep
learning models. Considering all the statements from
different points of view, selecting Gradient Boosting
regression (GBR), Extreme Gradient Boosting Regression
(XGBoost) and Light Gradient Boosting Regression
(LightGBR) models to fulfill the purpose of this study. These
models fit small datasets, and hence this research will use
these types of models. Boosting models can also be used in
showing feature importance, which is very vital for
interpretability in oil and gas studies where clear results
guide decisions. They are computationally efficient, taking
less time and resources compared to DL models. The main
purpose of this study is to conduct a comparative study based
on evaluation and identify the best predictive performance
model for production forecasting. Based on an 8:2 ratio, the
data points are separated into two sets: the training set and
the testing set. This suggests that 10713 of the 13392 data
points will be used to train the data-driven models, while the
other 2679 data points will be used for training purposes in
order to evaluate models' prediction capabilities.

3. Methodology

Data preparation is an essential stage in data analysis
processes. It includes handling missing data, data cleaning,
feature selection, and normalization to make raw data more
appropriate for analysis. It is necessary to remove
unnecessary observations, correct structural flaws, and
manage undesired outliers [10]. Here, a working flow
diagram is drawn in Fig.1 to understand the working flow of
the selective model. The selective three model methodology

are described below.
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Fig.1 Working Flow Diagram

3.1 Gradient Boosting Regression (GBR)
GBR is a powerful ML technique that has been used for
regression tasks. The principle behind it is to combine
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several weak learners, usually decision trees, into a strong
predictive model. The process initiates with an initializing
simple model having an average prediction of the target
variable. Further, it defines the loss function that quantifies
error in the prediction. In each round, a weak learner is
fitted to predict the residuals and the overall model is
updated by adding the predictions of the new learner to the
existing model, controlled by a learning rate parameter.
This continues for some predefined number of iterations or
until performance on some holdout validation set stops
improving [11]. GBR E,(x;) is defined as the sum of n
regression trees.

Fo(xe) = Xioq filxy) (1)

where every f;(x,) is a regression tree. The succession of
trees is constructed successively by estimating the new
regression tree f,,,,(x;) using the equation below:

argmin ¥ L(ye. F (x¢) + fr1(xe)) 2

Where L(.) is differentiable for loss-function L(.).
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Fig.2 Working flow diagram of GBR model.

3.2 Light Gradient Boosting Regression (LightGBR)

LightGBM is a gradient boosting decision tree
algorithm applied for classification, regression, and ranking
tasks. It is very good at residual value modeling and
prediction with high accuracy and efficiency, preferred in
those machine learning applications that need precision data
processing. The two most important techniques involved in
this algorithm to boost the performance are the Gradient-
Based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB) [12]. These combined methods make the
outputs of LightGBM fast and accurate. It will be capable of
handling big data, maintaining parallelism, and ensuring
satisfactory accuracy [13].
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Fig.3 Leaf-wise tree growth in LightGBR

LightGBR ensembles multiple weak regressors to make
one strong regressor, where each weak regressor represents
distinct features, which lets us know how much each feature
is affecting the prediction result. Due to this reason,
LightGBR has very good interpretability.

3.3 Extreme Gradient Boosting Regression (XGBoost)
XGBoost is a ML approach to solve regression and
classification problems by using a predictive model in the
form of a decision tree. It can be distinguished among
various implementations of Tree Gradient Boosting [14].

Depth-wise Growth

Fig.4 Basic structure of XGBoost tree model.

The main idea in XGBoost is an extension of the basic
boosting idea, namely iteratively adding weak trees with
different weights while improving the model step by step.
The set of trees must approach the residuals of the past
forecast as much as feasible, which is shown as follows.

Ve = Tho1 fi(x) fx €F 3)

where F is the function space that contains all of the
regression trees, x; is the i-th training sample, and f; is the
score for the k-th tree. It is anticipated that the projected
value 7, will approximate the genuine valuey;, to the greatest
extent feasible while maintaining its capacity for
generalization [15]. Below is the formula to calculate
objective (L).

L=y, l(yi,f/i(t)) + X, Q(f,) + constant  (4)

The loss function, or difference between the predicted
and true values, is represented by l(yl-, y}”) in the equation.
It can be Any second-order derivable loss function can be
used. Q(f;) defines the complexity of the model. The
complexity decreases and the generalization ability increases
with a decreasing value of Q(f}).

() = yT+ 5 Allwll? (5)

Where y and A are constant coefficients, T controls number
of tree leaves, w controls the score of each leaf. Since
XGBoost extends the loss function using second order
approximation and eliminates the constant component to
obtain the simplest goal [16]. As a result, XGBoost is flexible
enough to handle many issues and allows faster operation
speed and significantly shorter training time.

3.4 Model Performance Matrix

Here, we calculate R-square value (R?), Mean absolute
error (MAE), Root mean squared error (RMSE) to identify
the model performance.

S 0i-90)?
RZ =1- i=1\i™ Vi
T i-y)? ©)
1 N
MAE =;Z?:1|3’i =il )

RusE = [F5i, 0502 @)

4. Result and Discussion

The dataset used for predict production in this study is
oil production data (well NO159F-11H) of Volvo oil field in
Norwegian region. The including parameter are recorded
date, on_steam hour, average downhole pressure &
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temperature, average differential pressure tubing & annulus
pressure, average Choke-size percentage, average wellhead
pressure and temperature, choke-size, produced oil, gas &
water volume.

Data visualization of machine learning to represent how
dataset are correlated with each other. It helps us to identify
which parameter and how much influence to the target
feature. A data visualization technique called heat-map by
Fig.5 to identify the correlation between the input feature to
target feature. From heat-map analysis, we can see that the
value of coefficient is 0.99 for bore gas volume represent
highly correlated with bore oil volume. But bore water
volume in not highly correlated with bore oil volume because
of -0.35 coefficient value.
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Fig.5 Heat-map representation of correlation between all
data-point.
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Fig.6 Important feature identification.

To improve model performance, feature importance
helps to identify the most important relevant feature from the
data set. Due to highly correlated gas production with oil
that’s why it’s not taken into importance identification. This
technique helps us to determine the accurate prediction and
desired output. The feature importance graph is shown in the
Fig.6. Here, Fig.6 showed importance is almost zero for
average annulus pressure indicating the zero contribution to
the oil production from the reservoir.

Table 1 Evaluation Parameter of three models for training
and testing datasets.

Datasets Matrix GBR LightGBR XGBoost
R? 0.9999 0.9998 0.9999
Training RMSE 2.577 5.621 1.671
MAE 2.042 3.635 1.192
R? 0.9978 0.9977 0.9974
Testing RMSE 17.802 18.512 19.534
MAE 12.810 13.306 13.925

The performance matrix of three models are listed in
Table 1. The table is represented that all model are strongly
performed during the training and testing time. The R-square
value was found approximately 99 percent for three models
on both training and testing dataset.

The cross-plots comparing actual and predicted oil
production for GBR, LightGBR, and XGBoost are shown in
Figures 7a, 7b, and 7c, respectively. The red dashed line
represents a 45° slope, indicating the ideal line of perfect
predictions for all three models. In general, most data points
align closely with this line, showing high accuracy across the
models.

20004 * Training Data
e Testing Data
——- Perfect Prediction

1500 -

1000

Predicted values

500

T T y u T
] 500 1000 1500 2000
Actual Values

Fig.7a Cross-plot of actual vs predicted oil production for
training and testing dataset (GBR)
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Fig.7b Cross-plot of actual vs predicted oil production for
training and testing dataset (LightGBR)
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Fig.7c Cross-plot of actual vs predicted oil production for
training and testing dataset (XGBoost)

In Figures 7a-7c, the training data points are mostly
aligned along the 45° line, which indicates strong training
performance for all three models with minimal over- or
underestimation. However, Figure 7c (XGBoost) shows a
few outliers in the testing data, where some predictions are
underestimated - the points that lie below the perfect
prediction line and some are overestimated - the points that
lie above the perfect prediction line. Although these outliers
slightly impact XGBoost’s overall testing performance, they
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do not significantly affect the model's reliability compared to
GBR and LightGBR. Overall, the cross-plots confirm that
the training and testing performance of all three models is
excellent, with no significant outliers detected.

Learning Curve for Gradient Boosting Regressor
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Fig.8a Epoch vs Cost curve for the GBR
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Fig.8b Epoch vs Cost curve for the LightGBR

Learning Curve for XGBoost Regressor
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Fig.8c Epoch vs Cost curve for the XGBoost

GBR, LightGBR, and XGBoost learning curves
(Figures 8a—8c respectively) show clear trends in model
performance over time. Mean Squared Error (MSE)
decreases quickly in the first epochs for all three models,
then plateaus as the models converge. The training and
testing curves are well aligned, and GBR has the lowest final
MSE, indicating the best generalization. Contrarily,
LightGBM demonstrates a fast reduction in errors in the
early epochs and competitive performance in the end,
indicating its superior learning speed. Despite being more
effective than the other two models, XGBoost converges
more slowly and has higher MSE values.

The bar graph in Fig.9 illustrates the performance of
different models and helps identify the best model for this
dataset. The difference between the training and testing R-
squared values for both GBR) and LightGBM is 0.0021,
which is smaller than that observed for XGBoost. However,
XGBoost achieves the lowest RMSE and MAE during the
training phase. In contrast, GBR demonstrates the lowest
RMSE and MAE during the testing phase. The Difference in
the R-square value for the training and testing dataset is very
low, which indicates that these models are run without
overfitting.
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Fig.9 Visualization of Evaluation parameters

The consistent performance of the GBR model across both
training and testing sets highlights its robustness and
reliability is understood from this figure.

Optimum hyper-parameter tuning like grid search
algorithm are used in this study which help to identify this
best performance. The hyper-parameter tuning listed on
Table 2 and their corresponding value.

Table 2 Hyper-parameter tuning of three models.

Hyper-
parameter GBR LightGBR XGBoost
Tuning
objective regression | Squared_error
loss Squared_error
n_estimators 220 300 70
Learning_rate 0.2 0.2 0.3
max_depth 4 7 7

To compare the models' predictability, Fig.10 display
the actual versus predicted oil production.

Comparison of Actual vs. Predicted Produced Oil Volume

Produced Oil Volume

)))))

30
Observal tions

Fig.10 Comparison of actual and predicted oil production
for three models.

In these figures, the black line represents actual oil
production, while the three dashes-colored lines represent
the predicted oil production from three different models
respectively, based on daily records. Upon close
examination, the predicted lines almost overlap with the
actual production line. However, a deeper analysis reveals
fluctuations between the actual and predicted lines. The GBR
model shows the least fluctuation, whereas the LightGBR
and XGBoost models exhibit the more. Based on this
comparison, we can conclude that the GBR model is the most
accurate for this dataset.

5. Conclusion

In this paper, the primary goal was to identify the best
ML technique for predicting oil production using historical
data and key input parameters. The analysis of GBR,
LightGBR, and XGBoost models reveals their strengths and
limitations in predicting oil production. The heat-map
analysis shows a high correlation between bore gas volume
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and oil volume, while bore water volume shows a low
correlation. GBR and LightGBR show strong training and
testing performance, achieving approximately 99% R-
squared values. Cross-plots show high accuracy with GBR
and LightGBR aligning closely with the ideal 45° line.
XGBoost, while accurate, has some outliers where
predictions are slightly underestimated or overestimated,
affecting its reliability. Learning curve analysis reveals that
GBR achieves the lowest final MSE, showcasing excellent
generalization. LightGBR demonstrates rapid initial error
reduction and competitive performance, indicating its
superior learning speed. XGBoost converges more slowly
and has higher MSE values, reflecting a need for more tuning
to enhance generalization. GBR is the most reliable model
due to its superior testing accuracy, robust generalization,
and stable predictions, while XGBoost has higher testing
RMSE. Therefore, GBR is recommended as the best model
for predicting oil production.
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NOMENCLATURE
OSH : On Steam Hour, hour
ADP : Average Downhole Pressure, bar
ADT : Average Downhole Temperature, °C
ADPT  : Average Differential Pressure Tubing, bar
AAP : Average Annulus Pressure, bar

ACS : Average Choke-Size
AWP : Average Wellhead Pressure, °C
AWT  : Average Wellhead Temperature, °C
DPCS : Differential Pressure Choke-Size
BGV : Bore Gas Volume, sm3/days
BWV : Bore Water Volume, sm3/days
BOV : Bore Oil Volume, sm3/days
NN : Neural Network.
GBDT : Gradient Boosting Decision Tree.
LR : Liner Regression
GBR : Gradient Boosting Regression
LightGBR  Light Gradient Boosting Regression
XGBoost - EXtreme Gradient Boosting Regression
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