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ABSTRACT

In modern times, especially after the Industrial Revolution 4.0, artificial intelligence has become one of modern technology's
most discussed and fascinating aspects. Artificial intelligence is now being incorporated into almost all aspects of our lives. Safety
is an important field in which Al is now being implemented. Its decision-making capability from the numerical data makes it very
reliable. In recent days, Al has been implemented in the predictive maintenance of various complex machines as well. This study
aims to investigate the life prediction of turbofan engines. Deep learning and machine learning analyse the estimation of Remaining
Useful Life (RUL). These have not only saved resources and time but also ensured greater safety to mankind. A reliable deep-
learning model has been developed that can predict the RUL of a turbofan jet engine with very good reliability. The C-MAPSS
dataset, which was published by NASA, was utilized to train the model. The deep learning model used here is the BiLSTM because
it performs very well with sequential data and propagates both backward and forward directions. The dataset given by NASA has
already been split into training and testing sets. After normalizing the data, the model has been trained with three BiLSTM layers,
two fully connected layers, and one output layer. The result is quite satisfactory, with an R? value of 0.893728 and an RSME of
13.5468187.
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1. Introduction

In any machining operation, safety is always the first
priority. Every system requires maintenance at some point in
its lifespan [1]. A direct investigation takes both a longer time
and requires human resources. On the other hand, predictive
maintenance uses sensor-based data to estimate the time-to-
failure of a machine or equipment [2]. This method uses time-
to-failure duration with sensor data, which contributes to
minimized downtime, reduced cost, better safety and
maximized machine lifetime.

Engines are the main powerhouse of an aircraft that
produces the required thrust for the plane to fly. Turbofan jet
engines are used in modern aircraft for their longer flight time
and very little maintenance time. However, different operating
conditions, weather conditions, combustion pressure, and
other parameters can lead to variations in the remaining useful
life of the engine. Therefore, predictive maintenance is
required to exterminate unplanned downtime and lengthen the
lifecycle of the engine [3].

The deep learning approach requires a deep
understanding of the underlying physics of the life-to-
parameters relation to form a mathematical model to predict
the remaining life. This process incorporates different learning
algorithms to find the pattern in the data. Each model has its
strengths and weaknesses. So, it’s wise to compare different
models to find out which one predicts better. Generally, CNN,
LSTM, GRU, etc., are used for various predictive tasks. It’s a
general rule of thumb that LSTM works better with sequential
data, i.e., time-series data [4]. This research will focus on
BiLSTM to predict RUL.

The dataset used for the research is the C-MAPSS
dataset provided by NASA [5]. There are four types of datasets
there. This research focuses only on the first dataset.

2. Literature review

James Carroll et al. [6] investigate the prediction of
failure and remaining useful life (RUL) of gearboxes for
modern multi - megawatt wind turbines using SCADA and
vibration data. Three popular machine learning algorithms
were trained and tested in this research: an ANN, a support
vector machine (SVM), and a logistic regression approach.
The ANN provides the most correct failures and least missed
failures, with 72.5% of failures being correctly predicted out
of the three algorithms tested.

Sukwon et al. [7] developed the regression,
XGBoost, LightGBM, and DNN models to predict the life
span of buildings using the demolition permit dataset. That
model was considered more accurate, reducing the root mean
square error (RMSE) and increasing the coefficient of
determination (R2). Among them, DNN was the most
accurate with 95.5% prediction accuracy, which was 2.2%
greater than the linear regression model, whereas XGBoost
had weaker performance than the linear regression model.

Support Vector Machine, Random Forest, Decision
tree, K-means and CNN can be used for feature classification.
P. K. Ambadekar et al. [8] tested CNN on the tool wear
images to predict the remaining useful life of a cutting tool.
Depending upon tool wear, 1183 images were classified in
either class A, class B or class C, and CNN was applied to
these images, which provided an accuracy of 87.26%.

To predict the residual life of the tool, Shuo Wang
et al. [9] used four prediction models which are the CNN-
LSTM model, CNN-PSO model, and CNN-LSTM-PSO
model, and found that the CNN-LSTM-PSO model showed
the best accuracy with 1.3520 of RMSE value, 1.0892 of
MAE value and determination coefficient R2 value is 0.9961
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considering when R2 value is closest to 1, provides the
highest accuracy of prediction.

Xiang Li et al. [10] have proposed a new deep-
learning method based on CNN. In this paper, the C-MAPSS
dataset and two metrics, including scoring function and root
mean square error, have been used to check the performance
of this newly proposed method. Then, comparing this
method with basic neural network (NN), deep neural
network (DNN), recurrent neural network (RNN), and long
short-term memory (LSTM), it is observed that the proposed
method shows good prognostic performance with its simple
architecture, lower computing load, and five
convolution layers.

Rudra Karnik et al. [11] proposed an LSTM model
for RUL prediction of aircraft turbofan using the CMAPSS
dataset. This LSTM model consists of LSTM, dropout, and
fully connected layers and activation functions, including
tanh, sigmoid, and ReLu. Among four sub-datasets, FD0O01
and FD003 show more correlation with target RUL. So, these
two sub-datasets are used to obtain the RMSE value. The
proposed model (LSTM) shows the lowest RMSE value in
comparison with SVR, CNN, Deep LSTM, Hybrid Model
and CNN+LSTM, Which is 14.28 for FDO001 and
16.15 for FD003.

Caifeng Zheng et al. [12] proposed a new method
based on sliding time window (TW) and extreme learning
machines (ELM) to predict the RUL of aircraft engines using
the FDOO1 dataset. The performance of this proposed method
was tested by comparing its RMSE and score function with
other methods, including multilayer perceptron (MLP),
random forest regression (RFR), long short-term memory
(LSTM) and support vector machine (SVM). This proposed
method showed the most efficient result, and its RMSE and
score values are 13.78 and 267.31, respectively.

3. Problem statement

Conventional maintenance depends upon physical
inspection, which leads to more downtime and increased
costs. Failure in the turbofan jet engine while in flight can
cause fatal accidents, leading to loss of lives and huge
amounts of money. Therefore, a system is to be developed so
that it can be predicted before the accident so that proper
maintenance can be done [13]. With the rise of Al, the
demand for more secure maintenance systems has shot up.
Combined with the sensor data, these models can perform
very well, given that the data provided is large enough to
train.

4. Description of C-MAPSS turbofan jet engine dataset

The C-MAPSS turbofan jet engine dataset was
originally developed and published by NASA back in 2008
at the international conference on PHM [5]. Despite being
very old, this dataset is still being utilized for research
purposes for predictive maintenance system development of
turbofan jet engines. The dataset is divided into four units,
FDO001, FD002, FD003, and FD0O04, according to operating
condition and failure mode. The dataset contains a total of
709 engines for training and 709 engines for testing as well.
The parameters of the dataset are subdivided into two parts.
The first is the operating conditions and the second is the
sensor readings. There are three types of operating
conditions and 21 sensor readings for each observation. The
operating conditions are given in Table 1. The sensor
parameters are shown in Table 2.

Table -1. Operating conditions
Operating conditions

Operating range

Mach number 0to 0.90
Altitude Sea level to 40,000 ft
Sea level temperature -60 to 103° F
Table —2. Sensor parameters.
Sensor Parameter  Description
1 T2 Fan inlet temperature
2 T24 Temperature at LPC outlet
3 T30 Temperature at HPC outlet
4 T50 Temperature at LPT outlet
5 P2 Pressure at fan inlet
6 P15 Pressure at bypass-duct
7 P30 Pressure at HPC outlet
8 Nf Fan speed
9 Nc Core speed
10 Epr Engine pressure ratio

11 Ps30 Static pressure at HPC outlet
12 Phi Ratio of fuel flow to Ps30
13 NRf Corrected fan speed

14 Nrc Corrected core speed

15 BPR Bypass ratio

16 FarB Burner fuel-air ratio

17 HtBleed Bleed enthalpy

18 NF-dmd Demanded fan speed

Demanded corrected fan
speed

HPT coolant bleed

LPT coolant bleed

19 PCNR-dmd

20 w3l
21 W32

5. Methodology

In this investigation, we have used a BiLSTM-
based approach to estimate the RUL of turbofan jet engines.
BiLSTM was selected over others because it performs
remarkably well with sequential data, i.e., time series data,
unlike most other models. The key difference between
LSTM and BIiLSTM is that LSTM is unidirectional but
BILSTM is bidirectional, which can propagate both in a
forward and backward direction, making it more suitable for
the operation. The model's accuracy depends on the number
of layers and neurons in each layer. With hyperparameter
tuning, optimum values, batch size, learning rate, dropout
probability, etc. can be obtained. Using these increases the
accuracy while decreasing RMSE significantly.

The steps of the model are described in the sub-
sections.

5.1 Correlation analysis

First, we need to convert the dataset to an
appropriate and useful form for further analysis. We need to
put labels on the columns to identify them. Then, this data
frame is passed into correlational analysis. Correlational
analysis is carried out using the correlation coefficient ‘r’,
which can be mathematically written as,

conv(x,y)

T T s, (1)
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Here, we can find out the correlation of the features to the
target feature. With the correlation coefficients, a heatmap
was drawn which is known as correlation matrix that is given
in Figure 1.

Correlation of features with RUL
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Figure — 1. Correlation matrix of the dataset.

5.2 Data Filtering

The correlation data is then analyzed using a
median filter to filter the raw data. The features with very
low correlation coefficients are excluded for the simplicity
of the model [14].

From the correlation matrix, it can be easily
visualized that certain parameters do not contribute
significantly to the accuracy but rather decrease the model's
performance. By using the median filter, features with a
correlation coefficient close to zero are omitted. Parameters
that are omitted are opSetting3, T2, P2, epr, farB, Nf_dmd
and PCNfR_dmd.

The final correlational heatmap is given in Figure 2.

5.3 Data Normalization

The parameters in the dataset range differently for
each parameter. There is no boundary in which the
parameters vary. If this data is to be used for training, the
resulting model will be very inaccurate [15]. Therefore, the
data has to be normalized. We take the Z-score normalization,
which is formulated as,

&

—H ©)
o

N
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Here, Z is the normalized data, X; is the raw data, u is the
mean of all data, and o is the standard deviation [16].
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Figure — 2. Filtered correlation matrix.

5.4 Linear degradation modeling

It is seen that the remaining useful life (RUL)
decreases linearly with time [17]. But no data relates to
degradation. The process that was followed was to group the
data frame by the engine column. Then, the maximum cycle
of that engine is taken as the end-of-life (EOL). Now, it takes
an additional parameter called early RUL. Then, it compares
the EOL to early RUL. If the total life is less than the early
RUL, it keeps the original RUL values. Otherwise, the
algorithm creates a sequence of descending RUL by
subtracting the maximum cycle of an engine from successive
engine cycles.

A further approach was taken to assign the RUL to
each of the engines at every cycle while maintaining the
correct order. In order to do that, the entire training dataset is
first divided into batches of equal length. With the window
length and shift size, it iterates through the whole of the
dataset. For each window, it assigns the RUL sequence
received before to the engine group.

5.5 BiLSTM model development

The proposed BILSTM model utilizes the
normalized data before training. The model consists of three
bidirectional LSTM models along with two dense layers. The
benefit of using bidirectional LSTM is that it can process
input data sequences in both forward and backward
directions. The activation function used here is the
hyperbolic tangent function, which is most widely used in
LSTM modeling.
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Right after the BiLSTM layers, there are two fully
connected dense layers of 96 and 128 units, both using the
ReLu activation function. Finally, one output dense layer is
there to output the final regression result.

5.6 Evaluation matrix

After building the model, the model was trained
with the dataset to predict the RUL of each engine. We have
used two widely used evaluation methods here, RMSE and
scoring function, which is the most widely used and reliable
of all evaluation matrices. Mathematically, it is written as,

(=% (4)

RSME =
N

Here, X is the actual observation, x; is the estimated value,
and N is the number of samples.

In addition to the RSME, the PHMO08 data challenge
incorporated another evaluation matrix, namely the score
function [18]. The score function is as follows:

N
score = Zsj (5)
j=1
o 1, hi <0
e’3s -1, h
e10 — 1, h] >0

The better the model performs, the lower the RSME value
and the closer the score to zero.

6.0 Results and Discussion

Detailed performance of the proposed model is
evaluated. It is found that a number of factors influence the
performance and accuracy of a model. The first and foremost
are the window size, threshold values and initial RUL. And
then the hyper-parameters. These two factors significantly
affect the performance and reliability of the model. In this
study, we have utilized a somewhat straightforward
approach rather than hypertuning the model. This has a
significant impact on the performance of the model.
Hypertuning gives the optimum parameters of a model. In
the model, we have hardcoded the parameters ourselves as
shown in Table 3.

Table — 3. Model parameters.

Bi-LSTM Prediction Results
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Figure — 3. Prediction results.
In the line plot, the x-axis represents the number of engines,
while the y-axis represents the actual and predicted RUL. A
significant gap between the actual RUL and the predicted
RUL can be observed here. This is due to several factors.
First of all, the raw data contains a lot of noise, which
contributes to the loss of performance by increasing the gap
between the actual and predicted RUL. Secondly, the model
used in this investigation is rather straightforward without
hyper-parameter tuning. Even without doing these two, the
model is performing quite well due to the fact that the gap
between predicted and actual RUL is not considerably high.
So, upon fixing these two factors, the model is believed to
have a deviation between actual and predicted RUL close to
zero.

6.0 Conclusions

Predictive maintenance is now a trending field of
research due to its incredible reliability. This was a work on
the predictive maintenance and estimation of RUL of a
turbofan jet engine. There are numerous models that can be
utilized to predict. Among them, LSTM has a very solid
stand to be able to work with sequential data. With good data
pre-processing, each of the models can show very high
accuracy, but again, LSTM can handle sequential data better.
Feature selection, normalization, regularization, filtering,
etc., play a very crucial role in the performance of a model.
In our model, we have incorporated three layers of BiLSTM
layers with two fully connected layers. In the future,
hyperparameter tuning can be done in the model to find out
the optimal number of layers, number of neurons, batch size,
learning rate, and many more. Also, more efficient models
like transformers can be implemented here for better
accuracy and reliability.

NOMENCLATURE
LSTM

Leaning Batch Max No. No.of  Optimizer
rate size  epoch of neurons
layers ineach
layer
0.001 50 30 3 128,64,32 Adam

The model is then trained with the pre-processed data as
input, with the window length as 30 and an early RUL of 125.
The performance scores of the model were quite satisfactory.
The performance factors of the model are shown in Table -
2.
Table — 2. Model performance matrix.

Model RSME Score R?

BiLSTM 13.5468187 0.927647512 0.893728

The comparison between actual RUL and predicted RUL is
illustrated in Figure 3, which shows acceptable RUL
predictions.

: Long-Short Term Memory

CNN : Convolutional Neural Network

RUL : Remaining Useful Life

EOL : End of Life

BiLSTM : Bidirectional LSTM

GRU: Gated recurrent unit

SCADA: Supervisory Control and Data Acquisition
ANN: Avtificial Neural Network

XGBoost: Extreme Gradient Boosting
LightGBM:Light Gradient-Boosting Machine

DNN: Deep Neural Network

PSO: Particle Swarm Optimization

C-MAPSS: Commercial Modular Aero-Propulsion System
Simulation

SVR: Support Vector Regression

PHM: Prognostics and Health Management

RMSE: Root Mean Square Error
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