
 
Proceedings of 8th International Conference on Mechanical, Industrial and Energy Engineering 2024  

02-04 January, 2025, Khulna, BANGLADESH 

SciEn Conference Series: Engineering Vol. 3, 2025, pp 535-539 https://doi.org/10.38032/scse.2025.3.141 
 

*Corresponding Author Email Address: md.islam@me.kuet.ac.bd  Published By: SciEn Publishing Group 

 

 

Deep Learning-Based Prognostics for Turbofan Engine Remaining Life Prediction 

 

Md. Omar Faruk, Israt Jahan Keya, Md. Ashraful Islam*   

 
Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh 

 

ABSTRACT 

 In modern times, especially after the Industrial Revolution 4.0, artificial intelligence has become one of modern technology's 

most discussed and fascinating aspects. Artificial intelligence is now being incorporated into almost all aspects of our lives. Safety 

is an important field in which AI is now being implemented. Its decision-making capability from the numerical data makes it very 

reliable. In recent days, AI has been implemented in the predictive maintenance of various complex machines as well. This study 

aims to investigate the life prediction of turbofan engines. Deep learning and machine learning analyse the estimation of Remaining 

Useful Life (RUL). These have not only saved resources and time but also ensured greater safety to mankind. A reliable deep-

learning model has been developed that can predict the RUL of a turbofan jet engine with very good reliability. The C-MAPSS 

dataset, which was published by NASA, was utilized to train the model. The deep learning model used here is the BiLSTM because 

it performs very well with sequential data and propagates both backward and forward directions. The dataset given by NASA has 

already been split into training and testing sets. After normalizing the data, the model has been trained with three BiLSTM layers, 

two fully connected layers, and one output layer. The result is quite satisfactory, with an R2 value of 0.893728 and an RSME of 

13.5468187. 
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1. Introduction  

In any machining operation, safety is always the first 

priority. Every system requires maintenance at some point in 

its lifespan [1]. A direct investigation takes both a longer time 

and requires human resources. On the other hand, predictive 

maintenance uses sensor-based data to estimate the time-to-

failure of a machine or equipment [2]. This method uses time-

to-failure duration with sensor data, which contributes to 

minimized downtime, reduced cost, better safety and 

maximized machine lifetime.  

Engines are the main powerhouse of an aircraft that 

produces the required thrust for the plane to fly. Turbofan jet 

engines are used in modern aircraft for their longer flight time 

and very little maintenance time. However, different operating 

conditions, weather conditions, combustion pressure, and 

other parameters can lead to variations in the remaining useful 

life of the engine. Therefore, predictive maintenance is 

required to exterminate unplanned downtime and lengthen the 

lifecycle of the engine [3].  

The deep learning approach requires a deep 

understanding of the underlying physics of the life-to-

parameters relation to form a mathematical model to predict 

the remaining life. This process incorporates different learning 

algorithms to find the pattern in the data. Each model has its 

strengths and weaknesses. So, it’s wise to compare different 

models to find out which one predicts better. Generally, CNN, 

LSTM, GRU, etc., are used for various predictive tasks. It’s a 

general rule of thumb that LSTM works better with sequential 

data, i.e., time-series data [4]. This research will focus on 

BiLSTM to predict RUL. 

The dataset used for the research is the C-MAPSS 

dataset provided by NASA [5]. There are four types of datasets 

there. This research focuses only on the first dataset. 

2. Literature review 

James Carroll et al. [6] investigate the prediction of 

failure and remaining useful life (RUL) of gearboxes for 

modern multi‐megawatt wind turbines using SCADA and 

vibration data. Three popular machine learning algorithms 

were trained and tested in this research: an ANN, a support 

vector machine (SVM), and a logistic regression approach. 

The ANN provides the most correct failures and least missed 

failures, with 72.5% of failures being correctly predicted out 

of the three algorithms tested. 

Sukwon et al. [7] developed the regression, 

XGBoost, LightGBM, and DNN models to predict the life 

span of buildings using the demolition permit dataset. That 

model was considered more accurate, reducing the root mean 

square error (RMSE) and increasing the coefficient of 

determination (R2). Among them, DNN was the most 

accurate with 95.5% prediction accuracy, which was 2.2% 

greater than the linear regression model, whereas XGBoost 

had weaker performance than the linear regression model. 

Support Vector Machine, Random Forest, Decision 

tree, K-means and CNN can be used for feature classification. 

P. K. Ambadekar et al. [8] tested CNN on the tool wear 

images to predict the remaining useful life of a cutting tool. 

Depending upon tool wear, 1183 images were classified in 

either class A, class B or class C, and CNN was applied to 

these images, which provided an accuracy of 87.26%. 

To predict the residual life of the tool, Shuo Wang 

et al. [9] used four prediction models which are the CNN-

LSTM model, CNN-PSO model, and CNN-LSTM-PSO 

model, and found that the CNN-LSTM-PSO model showed 

the best accuracy with 1.3520 of RMSE value, 1.0892 of 

MAE value and determination coefficient R2 value is 0.9961 
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considering when R2 value is closest to 1, provides the 

highest accuracy of prediction. 

Xiang Li et al. [10] have proposed a new deep-

learning method based on CNN. In this paper, the C-MAPSS 

dataset and two metrics, including scoring function and root 

mean square error, have been used to check the performance 

of this newly proposed method. Then, comparing this 

method with basic neural network (NN), deep neural 

network (DNN), recurrent neural network (RNN), and long 

short-term memory (LSTM), it is observed that the proposed 

method shows good prognostic performance with its simple 

architecture, lower computing load, and five 

convolution layers. 

Rudra Karnik et al. [11] proposed an LSTM model 

for RUL prediction of aircraft turbofan using the CMAPSS 

dataset. This LSTM model consists of LSTM, dropout, and 

fully connected layers and activation functions, including 

tanh, sigmoid, and ReLu. Among four sub-datasets, FD001 

and FD003 show more correlation with target RUL. So, these 

two sub-datasets are used to obtain the RMSE value. The 

proposed model (LSTM) shows the lowest RMSE value in 

comparison with SVR, CNN, Deep LSTM, Hybrid Model 

and CNN+LSTM, Which is 14.28 for FD001 and 

16.15 for FD003. 

Caifeng Zheng et al. [12] proposed a new method 

based on sliding time window (TW) and extreme learning 

machines (ELM) to predict the RUL of aircraft engines using 

the FD001 dataset. The performance of this proposed method 

was tested by comparing its RMSE and score function with 

other methods, including multilayer perceptron (MLP), 

random forest regression (RFR), long short-term memory 

(LSTM) and support vector machine (SVM). This proposed 

method showed the most efficient result, and its RMSE and 

score values are 13.78 and 267.31, respectively. 

3. Problem statement 

 Conventional maintenance depends upon physical 

inspection, which leads to more downtime and increased 

costs. Failure in the turbofan jet engine while in flight can 

cause fatal accidents, leading to loss of lives and huge 

amounts of money. Therefore, a system is to be developed so 

that it can be predicted before the accident so that proper 

maintenance can be done [13]. With the rise of AI, the 

demand for more secure maintenance systems has shot up. 

Combined with the sensor data, these models can perform 

very well, given that the data provided is large enough to 

train. 

 

4. Description of C-MAPSS turbofan jet engine dataset 

 The C-MAPSS turbofan jet engine dataset was 

originally developed and published by NASA back in 2008 

at the international conference on PHM [5]. Despite being 

very old, this dataset is still being utilized for research 

purposes for predictive maintenance system development of 

turbofan jet engines. The dataset is divided into four units, 

FD001, FD002, FD003, and FD004, according to operating 

condition and failure mode. The dataset contains a total of 

709 engines for training and 709 engines for testing as well. 

The parameters of the dataset are subdivided into two parts. 

The first is the operating conditions and the second is the 

sensor readings. There are three types of operating 

conditions and 21 sensor readings for each observation. The 

operating conditions are given in Table 1. The sensor 

parameters are shown in Table 2. 

 

 

Table -1. Operating conditions 

Operating conditions Operating range 

Mach number 0 to 0.90 

Altitude Sea level to 40,000 ft 

Sea level temperature -60 to 103° F 

 

Table –2. Sensor parameters. 

Sensor Parameter Description 

1 T2 Fan inlet temperature 

2 T24 Temperature at LPC outlet 

3 T30 Temperature at HPC outlet 

4 T50 Temperature at LPT outlet 

5 P2 Pressure at fan inlet 

6 P15 Pressure at bypass-duct 

7 P30 Pressure at HPC outlet 

8 Nf Fan speed 

9 Nc Core speed 

10 Epr Engine pressure ratio 

11 Ps30 Static pressure at HPC outlet 

12 Phi Ratio of fuel flow to Ps30 

13 NRf Corrected fan speed 

14 Nrc Corrected core speed 

15 BPR Bypass ratio 

16 FarB Burner fuel-air ratio 

17 HtBleed Bleed enthalpy 

18 NF-dmd Demanded fan speed 

19 PCNR-dmd Demanded corrected fan 

speed 

20 W31 HPT coolant bleed 

21 W32 LPT coolant bleed 
 

 

5. Methodology 

In this investigation, we have used a BiLSTM-

based approach to estimate the RUL of turbofan jet engines. 

BiLSTM was selected over others because it performs 

remarkably well with sequential data, i.e., time series data, 

unlike most other models. The key difference between 

LSTM and BiLSTM is that LSTM is unidirectional but 

BiLSTM is bidirectional, which can propagate both in a 

forward and backward direction, making it more suitable for 

the operation. The model's accuracy depends on the number 

of layers and neurons in each layer. With hyperparameter 

tuning, optimum values, batch size, learning rate, dropout 

probability, etc. can be obtained. Using these increases the 

accuracy while decreasing RMSE significantly.  

The steps of the model are described in the sub-

sections. 

 

5.1 Correlation analysis 

 First, we need to convert the dataset to an 

appropriate and useful form for further analysis. We need to 

put labels on the columns to identify them. Then, this data 

frame is passed into correlational analysis. Correlational 

analysis is carried out using the correlation coefficient ‘r’, 

which can be mathematically written as, 

 
𝑟 =  

𝑐𝑜𝑛𝑣(𝑥, 𝑦)

𝑠𝑥𝑠𝑦

 

 

 

(1) 

 
𝑟 =  

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

√(∑ (𝑥𝑖 − 𝑥̅)𝑛
𝑖=1 )(∑ (𝑦𝑖 − 𝑦̅)𝑛

𝑖=1 )
 

 

 

(2) 
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 Here, we can find out the correlation of the features to the 

target feature. With the correlation coefficients, a heatmap 

was drawn which is known as correlation matrix that is given 

in Figure 1. 

 
Figure – 1. Correlation matrix of the dataset. 

 

5.2 Data Filtering 

 The correlation data is then analyzed using a 

median filter to filter the raw data. The features with very 

low correlation coefficients are excluded for the simplicity 

of the model [14]. 

From the correlation matrix, it can be easily 

visualized that certain parameters do not contribute 

significantly to the accuracy but rather decrease the model's 

performance. By using the median filter, features with a 

correlation coefficient close to zero are omitted. Parameters 

that are omitted are opSetting3, T2, P2, epr, farB, Nf_dmd 

and PCNfR_dmd. 

The final correlational heatmap is given in Figure 2. 

 

5.3 Data Normalization 

 The parameters in the dataset range differently for 

each parameter. There is no boundary in which the 

parameters vary. If this data is to be used for training, the 

resulting model will be very inaccurate [15]. Therefore, the 

data has to be normalized. We take the Z-score normalization, 

which is formulated as, 

  𝑧 =  
𝑥𝑖 − 𝜇

𝜎
 (3) 

 

Here, Z is the normalized data, xi is the raw data, 𝜇 is the 

mean of all data, and 𝜎 is the standard deviation [16].  

 

 
Figure – 2. Filtered correlation matrix. 

 

5.4 Linear degradation modeling 

 It is seen that the remaining useful life (RUL) 

decreases linearly with time [17]. But no data relates to 

degradation. The process that was followed was to group the 

data frame by the engine column. Then, the maximum cycle 

of that engine is taken as the end-of-life (EOL). Now, it takes 

an additional parameter called early RUL. Then, it compares 

the EOL to early RUL. If the total life is less than the early 

RUL, it keeps the original RUL values. Otherwise, the 

algorithm creates a sequence of descending RUL by 

subtracting the maximum cycle of an engine from successive 

engine cycles. 

A further approach was taken to assign the RUL to 

each of the engines at every cycle while maintaining the 

correct order. In order to do that, the entire training dataset is 

first divided into batches of equal length. With the window 

length and shift size, it iterates through the whole of the 

dataset. For each window, it assigns the RUL sequence 

received before to the engine group.  

 

5.5 BiLSTM model development 

 The proposed BiLSTM model utilizes the 

normalized data before training. The model consists of three 

bidirectional LSTM models along with two dense layers. The 

benefit of using bidirectional LSTM is that it can process 

input data sequences in both forward and backward 

directions. The activation function used here is the 

hyperbolic tangent function, which is most widely used in 

LSTM modeling.  
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Right after the BiLSTM layers, there are two fully 

connected dense layers of 96 and 128 units, both using the 

ReLu activation function. Finally, one output dense layer is 

there to output the final regression result.  

 

5.6 Evaluation matrix 

 After building the model, the model was trained 

with the dataset to predict the RUL of each engine. We have 

used two widely used evaluation methods here, RMSE and 

scoring function, which is the most widely used and reliable 

of all evaluation matrices. Mathematically, it is written as,  

 

𝑅𝑆𝑀𝐸 =  √
∑ (𝑥𝑖 − 𝑥̅)𝑁

𝑖=1

𝑁
 

 

(4) 

 

Here, xi is the actual observation, 𝑥𝑖̅ is the estimated value, 

and N is the number of samples.  

In addition to the RSME, the PHM08 data challenge 

incorporated another evaluation matrix, namely the score 

function [18]. The score function is as follows: 

 

𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑠𝑗

𝑁

𝑗=1

 

 

(5) 

 

𝑠𝑗 = {
𝑒

−ℎ
13 − 1,     ℎ𝑗 < 0

𝑒
−ℎ
10 − 1,     ℎ𝑗 ≥ 0

 

 

(6) 

 

The better the model performs, the lower the RSME value 

and the closer the score to zero. 

 

6.0 Results and Discussion 

 Detailed performance of the proposed model is 

evaluated. It is found that a number of factors influence the 

performance and accuracy of a model. The first and foremost 

are the window size, threshold values and initial RUL. And 

then the hyper-parameters. These two factors significantly 

affect the performance and reliability of the model. In this 

study, we have utilized a somewhat straightforward 

approach rather than hypertuning the model. This has a 

significant impact on the performance of the model. 

Hypertuning gives the optimum parameters of a model. In 

the model, we have hardcoded the parameters ourselves as 

shown in Table 3.  

 

Table – 3. Model parameters. 

Leaning 

rate 

Batch 

size 

Max 

epoch 

No. 

of 

layers 

No. of 

neurons 

in each 

layer 

Optimizer 

0.001 50 30 3 128,64,32 Adam 

 

The model is then trained with the pre-processed data as 

input, with the window length as 30 and an early RUL of 125.  

The performance scores of the model were quite satisfactory. 

The performance factors of the model are shown in Table - 

2. 

Table – 2. Model performance matrix. 

Model RSME Score R2 

BiLSTM 13.5468187 0.927647512 0.893728 

The comparison between actual RUL and predicted RUL is 

illustrated in Figure 3, which shows acceptable RUL 

predictions. 

 
Figure – 3. Prediction results. 

In the line plot, the x-axis represents the number of engines, 

while the y-axis represents the actual and predicted RUL. A 

significant gap between the actual RUL and the predicted 

RUL can be observed here. This is due to several factors. 

First of all, the raw data contains a lot of noise, which 

contributes to the loss of performance by increasing the gap 

between the actual and predicted RUL. Secondly, the model 

used in this investigation is rather straightforward without 

hyper-parameter tuning. Even without doing these two, the 

model is performing quite well due to the fact that the gap 

between predicted and actual RUL is not considerably high. 

So, upon fixing these two factors, the model is believed to 

have a deviation between actual and predicted RUL close to 

zero. 

 

6.0 Conclusions 

 Predictive maintenance is now a trending field of 

research due to its incredible reliability. This was a work on 

the predictive maintenance and estimation of RUL of a 

turbofan jet engine. There are numerous models that can be 

utilized to predict. Among them, LSTM has a very solid 

stand to be able to work with sequential data. With good data 

pre-processing, each of the models can show very high 

accuracy, but again, LSTM can handle sequential data better. 

Feature selection, normalization, regularization, filtering, 

etc., play a very crucial role in the performance of a model. 

In our model, we have incorporated three layers of BiLSTM 

layers with two fully connected layers. In the future, 

hyperparameter tuning can be done in the model to find out 

the optimal number of layers, number of neurons, batch size, 

learning rate, and many more. Also, more efficient models 

like transformers can be implemented here for better 

accuracy and reliability.  

 

NOMENCLATURE 

LSTM 

CNN 

RUL 

EOL 

BiLSTM 

GRU: 

SCADA: 

ANN: 

XGBoost: 

LightGBM: 

DNN: 

PSO: 

C-MAPSS: 

 

SVR: 

PHM: 

RMSE: 

 

: Long-Short Term Memory 

: Convolutional Neural Network 

: Remaining Useful Life 

: End of Life 

: Bidirectional LSTM 

Gated recurrent unit 

Supervisory Control and Data Acquisition 

Artificial Neural Network 

Extreme Gradient Boosting 

Light Gradient-Boosting Machine 

Deep Neural Network 

Particle Swarm Optimization 

Commercial Modular Aero-Propulsion System 

Simulation 

Support Vector Regression 

Prognostics and Health Management 

Root Mean Square Error 
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