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ABSTRACT 

Composite materials, formed by consolidating two or more materials with distinct physical and chemical characteristics, exhibit 

unique properties which is not found in their individual components. Extensive research has been conducted using micromechanical 

approaches to analyze unidirectional (UD) composites, demonstrating their efficacy in addressing composite material-related 

challenges. This study employed micromechanical finite element analysis (FEA) to estimate the effective properties of UD E-glass 

fiber reinforced composites. The analysis started with a random distribution of fibers within the representative volume element 

(RVE), followed by two regular distributions: hexagonally packed and square packed. An algorithm using Python generated the 

random fiber distribution within RVE, considering the fibers have perfectly circular cross-sections. The fiber volume fraction within 

the RVE was varied from 0.1 to 0.5, and the effects on the properties of the composite were evaluated. Rule of Mixtures (ROM) 

was employed to determine the longitudinal modulus and Poisson’s ratio, while Halpin-Tsai equation was applied for the transverse 

modulus and shear modulus. These analytical solutions were then compared with FEA results. It is observed from the present 

analysis that with fiber volume fraction increased from 10% to 50% the effective properties also increased, for instance E11 for 

random distribution increased from 11.76 GPa to 39.5 GPa, except the Poisson’s ratio, which decreased to 0.25 from 0.32. 

Comparing with the other distribution, Random distribution exhibited superior load carrying capacity. 
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1. Introduction 

       Composite materials, essential in engineering for their 

superior performance, are widely used in automobiles, 

spacecraft, and sports equipment. Unidirectional composites 

are specifically valued and considered transversely isotropic 

homogeneous materials in many applications [1]. These 

composites possess distinctive characteristics, meeting high 

demand more efficiently and profitably than regular materials. 

Advantages include stable homogeneous properties, reduced 

production costs, decreased weight, and improved impact and 

fatigue resistance [2]. Traditional materials often require extra 

strength in non-load-bearing directions, adding unnecessary 

cost and weight to structures [3]. Homogenization of elastic 

properties for composites is a very important phase of the 

process of any composite material structure. For instance, 

micromechanical model equations are proposed by Chamis [4], 

and the asymptotic mean-field homogenization are proposed 

by Mori-Tanaka [5]. FEA techniques including the RVE 

homogenization method are more precise, extensively used to 

forecast the effective elastic property of composites, and have 

emerged as the standard procedure for dealing with composite 

materials [6, 7]. Utilizing micromechanics, Bednarcyk, B.A. 

and Arnold forecasted deformation and failure for titanium 

composites with longitudinal reinforcement [1]. Kok, de 

J.M.M. and Meijer, H.E.H studied the effect of fiber volume 

fraction and test temperature for the effective transverse 

mechanical properties for epoxy matrix embedded with glass 

fiber by both experimental and numerical methods [8]. 

Christoph Unterweger, Oliver Brüggemann, and Christian 

Fuerst studied the influence of many kinds of fibers and their 

volume fractions for the short fiber-reinforced polypropylene 

composites [9]. Sonparote PW and Lakkad SC investigated 

the various mechanical properties (tensile, compressive, 

flexural etc.) of a hybrid composite [10]. Lamon, J, determined 

the mechanical behavior of brittle- matrix composites on the 

basis of micro mechanics approaches [11]. Sun, H., Di, S., 

Zhang, N. and Wu, C. proposed a new way to predicting the 

effective mechanical properties for composite materials by 

using incompatible multivariable FEM and homogenization 

theory [12]. Jamal, and Mirbagheri investigated the elastic 

modulus of short natural fiber hybrid composites using the 

hybrid rule of mixture [13]. Ramesh M, Palanikumar K, 

Hemachandra Reddy K. evaluated the mechanical properties 

for the sisal-jute-glass fiber reinforced in polyester matrix 

composites [14]. Li, S. used two types of standardized unit cell 

model (Square and hexagonal) for micromechanical analysis 

of unidirectional composite [3]. Bonora, N. and Ruggiero, A. 

investigated the unit cell model development and also the 

effect of manufacturing process by using the micromechanical 

model of composites with mechanical interface [15]. Drago, 

A. and Pindera, M.-J. used the micro-macromechanical 

analysis technique for heterogeneous materials and compared 

the result for two cases macroscopically homogeneous and 

periodic micro structur.[16]. Wongsto, A. and Li, S. set up a 

systematic way for micromechanical analysis of UD fiber 

reinforced composites for random distribution of fiber [17]. 

To forecast the effective stiffness of fiber reinforced 

composites with perfect fiber orientation, the Halpin–Tsai 

approach is often utilized. Halpin-Tsai equations are used here 

for predicting transverse elastic modulus and shear modulus.  
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The following are the standard versions of Halpin–Tsai 

equations [19]. 
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In this case, P symbolizes the effective property of the 

composite [19,20]. Nevertheless, these procedures are not 

equipped to make room for the consequences of geometrical 

modifications of component materials at the micro level. The 

microscopic structure of materials directly influences their 

behavior in many ways. Therefore, this work aims to analyze 

three composite systems: random, hex-packed, and square 

packed to determine their effective elastic properties as well 

as to create glass fiber-reinforced epoxy composites with 

desired characteristics for specific applications by utilizing 

ABAQUS CAE software [21]. 

 

2.0 Computational Modeling 

2.1 Governing Equation 

     Within the RVE macro-stresses and macro-strain are 

related to each other by the following equation. 

 

     M MC =  (3) 

 

Every RVE gets applied to six different macrostrains in this 

procedure. For every imposed non-zero macrostrain, periodic 

boundary conditions typically applied to ensure that all the 

other macrostrains are zero [22]. The matrix [C] can be 

inverted to get our intended compliance matrix[S]. 

Compliance is the inverse property of stiffness.  
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2.2 Material Properties 

     The composite E-glass fibers are used as reinforcement 

within the matrix while for the matrix Epoxy resins is used. 

Their elastic mechanical properties are given below in a table 

[8]. 

 

                Table 1 Elastic properties of materials. 

Property E-Glass fiber Epoxy 

Elastic modulus, E11 (GPa) 72.4 3.5 

Poisson’s ratio, v12 0.2 0.35 

 

2.3 Physical Aspect of the Model 

     For each type distribution, five RVE are designed for five 

distinct volume fractions of fibers (0.1, 0.2, 0.3, 0.4 & 0.5). 

Several fibers are taken to ensure better randomization in 

Random distribution. For any given fibers volume fraction, 

total number of fibers can be calculated from the following 

equation 

 

 

2

f

f

f

v A
n

r
=  

(5) 

 

   Table 2 Models for Random Distribution of Fibers. 

 

 

   

 

 

 

 

 

 

Fig-1(a) representing the unit cell for random distribution of 

fibers is epoxy matrix, where the volume fraction of E-glass 

fibers is 0.4 or 40%. Locations for each fiber are determined 

by using a Python algorithm. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 1 Front view and meshing of model-4 for volume 

fraction of 0.4 (a) random (b) hexagonal and (c) square 

 

Fig. 1(a) shows Random Distribution Model No-04 with a 

40% fiber volume fraction, using hex-dominant meshing. This 

technique prioritizes hexahedral elements (C3D8), an 8-node 

linear brick element, to create high-quality meshes. Fig. 1(b) 

illustrates the representative volume element (RVE) where E-

glass fibers are hexagonally packed, generated using a micro-

mechanics plugin. The unit cell's dimensions are 41.72825 µm 

(length), 24.09182 µm (width), and 5 µm (depth), with a fiber 

radius of 8 µm. For square-packed fibers, the unit cell is 

31.70662 µm with fibers arranged regularly. Both models 

assume perfect fiber-matrix interaction. Fig. 1(c) shows the 

Distribution 

type 

Model 

No. 

 vf rf (µm) nf 

 01 0.1  5 

 02 0.2  11 

Random 03 0.3 8 15 

 04 0.4  21 

 05 0.5  26 
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unit cell for the composite model, also meshed with C3D8 

elements. 

 

2.4 Boundary Condition 

     In this analysis, periodic boundary conditions (PBCs) are 

applied to each model. PBCs are a common technique used to 

approximate the behavior of an infinite or large system by 

analyzing a representative small portion which is known as 

representative volume element (RVE). This method is widely 

employed in finite element analysis to ensure the modeled 

region behaves consistently with the larger system. 

 

 
 

Fig.2: The displacement boundary conditions applied to 

determine the effective elastic characteristics are depicted 

schematically. (a) for E11, (b) for E22, (c) for E33, (d) for G12, 

(e) for G13, (f) for G23 

 

2.5. Result Verification: 

     For accuracy of the system that is used for current work, a 

published research paper is chosen and verified [22].  

 

 
(a) 

 

 
(b) 

 

Fig.3 Comparison of current work with the work [22] for 

(a)longitudinal elastic property E11 and (b) shear modulus, 

G12 

 

In Fig. 3(a) longitudinal elastic modulus from published paper 

and current work are compared. Shape and nature of the 

current study graph are perfectly agreed with the published 

work. Both are linearly varying with the volume fraction. 

From the Fig 3(b), it is noticeable that both graphs G12 and 

G12(paper) have the increasing trend(non-linear) as the volume  

fraction increases. In most of the cases, deviation of the current 

work data from the published data is within 20%. 

 

2.6 Mesh Dependency Test 

     Figure 4 indicates that the elastic constant E11 fluctuates 

below 500,000 elements, peaks at 34.651 GPa about 600,000, 

and then stabilizes around 1.3 million. For accuracy and 

minimal duration of simulation, 1 million elements are chosen 

as the most optimal number. 

 

 
 

Fig.4 Variation of longitudinal elastic property E11 with 

element number. 

 

3. Result and Discussions 

3.1 Effect of Volume fraction of Fiber on Longitudinal 

and transverse Elastic Modulus 

     Random fiber distribution, from Fig.5(a), consistently 

achieves the maximum longitudinal elastic modulus 

throughout all volume fractions, from about 11.76 GPa at 0.1 

volume fraction to about 39.5 GPa at 0.5 volume fraction, 

according to the examination of fiber distributions. This 

linear rise predicts improved stiffness and load transmission 

because the fibers are aligned favorably in numerous 

directions. On the other hand, an identical linear trend can be 

seen in hexagonal packing, where moduli gradually rise from 

around 10.4 GPa at 0.1 to roughly 38 GPa at 0.5. Compared 

to random distributions, hexagonal packing offers reasonable 

stiffness, but its evenly distributed organization restricts 

elasticity. With a starting point of around 10.53 GPa and a 

peak of about 38 GPa at 0.5 volume percent, square packing 

exhibits the lowest elastic modulus. Its lower performance 

can be credited to geometric arrangement-related inefficient 

load transmission. Elastic modulus may be approximated 

directly using the Rule of Mixtures (RoM): 

 

11 f fg m fmE E V E V= +
 

which predicts values ranging from around 10.39 GPa at 0.1 

to 37.95 GPa at 0.5. Fig.5(b) shows both the analytical and 

finite element analysis (FEA) solutions for the transverse 

elastic modulus E22. Unlike E11, E22 does not vary linearly. 

Instead, E22 shows a non-linear rising trend with the 

increase of volume fraction. The Rule of Mixtures (RoM) 

cannot accurately predict the analytical solution for E22, 

making it unsuitable for this task, hence a semi empirical 

relation named Halpin Tsai is used. The study of the 

transverse elastic modulus E22 as a function of volume 

fraction for three fiber configurations demonstrates 

noticeable patterns. As the volume percentage grows, the 

fibers start interacting more strongly, which will increase 
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elasticity; however, this improvement does not continue 

linearly due to the constraints and deformation of the 

surrounding matrix. 

 
                                                  (a) 

 
(b) 

 
(c) 

Fig.5 Effect of volume fraction of fiber on (a) longitudinal 

elastic modulus E11, (b) transverse elastic modulus E22 

and (c) E33 

 

At 0.1 volume fraction, the recorded E22 values are as 

follows(approximately): Random: 4.56 GPa, hexagonal: 4.4 

GPa, square: 4.35 GPa, Halpin-Tsai: 4.33 GPa. The random 

structure provides the better performance as compared to the 

square arrangement. After volume fraction of 0.3, the results 

vary even further. At a maximum volume fraction of 0.5, the 

moduli are as follows: random: 11.5 GPa, hexagonal: 9.5 

GPa, square: 8.1 GPa, and halpin-tsai: 10.7 GPa. The random 

fiber arrangement consistently achieves the largest E22 

values, with a non-linear increase as the volume percentage 

increases. While initially competitive, the hexagonal 

arrangement falls behind with increased fiber concentration, 

whereas the square structure stays at the lowest throughout 

all fractions. The Halpin-Tsai model closely resembles 

random behavior but tends to downplay other configurations 

considerably. Figure 5(c) shows that the fluctuation of E33 

with respect to volume fraction follows a similar trend as that 

of E22. The modified Halpin-Tsai equation is used to get the 

analytical solution for E33, which is then compared to the 

FEA findings. At a volume fraction of 0.1, the moduli are: 

Random (4.5 GPa), Hexagonal (4.4 GPa), Square (4.37 GPa),  

and Halpin-Tsai (4.33 GPa). The random layout has the 

largest modulus, whereas the square arrangement is the least 

effective. At the greatest volume fraction of 0.5, the values 

are: Random: 11.08 GPa, Hexagonal: 9.42 GPa, Square: 8.14 

GPa, and Halpin-Tsai: 10.96 GPa. The random configuration 

reaches 11.0 GPa, whereas the square arrangement stays 

substantially lowerest. The random distribution findings 

correspond better with the analytical solution, but the other 

two configurations deviate from it. In both cases E22 and 

E33, fibers are aligned perpendicular to the load direction, 

resulting in a more complicated load transmission 

mechanism. At low volume fractions, the matrix material can 

deform greatly, and the fibers' effect on stiffness may not be 

completely reflected. As additional fibers are packed into the 

matrix, their organization and interaction can cause 

nonlinear effects. At a greater volume percentage, the 

possibility such as fiber-fiber interaction, matrix yielding, or 

non- uniform stress distribution might become prominent, 

resulting in a divergence from the linear elastic modulus 

change. 

 

3.2 Effect of Volume fraction of Fiber on Poisson Ratio 

 

 
(a) 

 
(b) 

 
(c) 

Fig .6 Effect of volume fraction of fiber on Poisson ratio, 

(a) v12, (b)v13 and (c) v23 

 

Analytical solution of Poisson’s ratio v12, v13, and v23 were 

determined with the help of Rule of mixture. Results from 

the Finite element analysis then compared with the analytical 

one obtained from role of mixture. Fig.6(a), (b), and (c) 

shows a declining trend for each: v12, v13, and v23 as volume 

fraction increases. In every case, the Rule of Mixture’s 
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findings are in excellent agreement with the FEA solutions. 

As the volume fraction increases from 0.1 to 0.5, Poisson’s 

ratio decreases across all the configurations. At a volume 

fraction of 0.1, the values of v12 are approximately 0.32 for 

Random and Square, 0.33 for Hexagonal, and 0.34 for RoM. 

At a volume fraction of 0.5, the Poisson’s ratio drops to about 

0.25 for Random and Square, 0.26 for Hexagonal, and RoM. 

RoM as a idealized prediction remains higher than any other 

configuration throughout all the cases. Interaction between 

matrix and fiber, which is much stiffer than matrix, causes a 

lowering Poisson’s ratio. As the volume fraction increases, 

fibers resist deformation more efficiently, lowering lateral 

strain and this leads to decreased Poisson’s ratio. 

 

3.3 Effect of Volume fraction of Fiber on Shear Modulus 

     First of all, analytical solutions for shear modulus are 

obtained using Halpin Tsai equation and then compared with 

the FEA solutions. Variations of G12, G13 and G23 with 

volume fraction of fibers are showing below 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig.7 Effect of volume fraction of fiber on shear modulus 

(a) G11, (b) G22 and (c) G33 

 

Fig.7(a), (b) and (c) provide a comprehensive analysis of the 

shear modulus G12, G13, and G23 of composite materials in 

terms of fiber volume fraction for different configurations. 

Mechanical performance of these composites is compared 

using theoretical and empirical models such as the Halpin-

Tsai equation and different fiber packing geometries. The 

general trend indicates that the shear modulus increases with 

the fiber volume fraction for all configurations, as predicted. 

Results indicate that both fiber arrangement and volume 

fraction have a significant impact on shear modulus, with 

random packing providing the largest modulus values and 

square packing resulting in the smallest. For G12, at a volume 

fraction of 0.1, the shear modulus is approximately 1.6 GPa, 

and it increases to about 3.9 GPa at a volume fraction of 0.5. 

The enhanced modulus for the random packing can be 

attributed to the more isotropic distribution of fibers, which 

provides a more uniform stress distribution under shear 

loading. The hexagonal fiber arrangement exhibited a 

slightly lower shear modulus compared to the random 

arrangement but is still significantly higher than the square 

packing. At a volume fraction of 0.1, the modulus is 

approximately 1.65 GPa, increasing to 3.5 GPa at a volume 

fraction of 0.5. The square fiber arrangement showed the 

lowest shear modulus values across all volume fractions. 

Initially, at low volume fractions, fiber-matrix interaction is 

weak, and the matrix dominates mechanical properties. At 

higher fiber volume fractions, interactions between fibers 

increase, particularly in random and hexagonal arrangements, 

further enhancing stiffness non-linearly. 

 

5.0 Conclusion 

     The micro-mechanical modeling approach was used to 

investigate the homogenized mechanical properties of the 

epoxy composite reinforced with e-glass fibers. The 

influence of fiber volume fraction and arrangement on the 

effective elastic properties of composites has been found 

using for random, hex-packed, and square packed: 

• Increasing the volume fraction of e-glass fibers 

considerably increase the elastic modulus of the 

composite.  

• Among the three configurations (random, hex-

packed, square packed), random distribution 

demonstrated exceptionally good alignment with 

the analytical solution.  

• The variation of the longitudinal elastic modulus, 

E11, was found to be linear, showing a sharp 

increase from 10 GPa to approximately 40 GPa as 

the fiber volume fraction increased from 10% to 

50%.  

• A similar trend was obtained for the transverse 

elastic moduli, E22 and E33, both increasing from 4 

GPa to around 12 GPa as the fiber volume fraction 

rose from 10% to 50%. 

• Poisson’s ratio was found to decrease (from 

approximately 0.34 to 0.26) as the volume fraction 

of fiber increased. The overall stiffness of the 

composite increased with higher volume fraction 

which resulted in smaller lateral deformation hence 

the Poisson’s ratio.  

• Shear moduli (G12, G13, and G23) were found to 

increase non linearly (roughly from 1.5GPa to 

4.3GPa) as the as volume fraction of fibers went 

10% to 50%. 
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Nomenclature 

Pf    : characteristics of fibers 

Pm  : characteristics of matrix 

Vf   : volume fraction 

ζ    : geometry parameter 

[C]: stiffness matrix. 

σM : macro-stress 

εM  : macro-strain 

nf   : total number of fibers 

rf   : radius of fibers 

A   : cross-sectional area 

 


