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ABSTRACT

Composite materials, formed by consolidating two or more materials with distinct physical and chemical characteristics, exhibit
unique properties which is not found in their individual components. Extensive research has been conducted using micromechanical
approaches to analyze unidirectional (UD) composites, demonstrating their efficacy in addressing composite material-related
challenges. This study employed micromechanical finite element analysis (FEA) to estimate the effective properties of UD E-glass
fiber reinforced composites. The analysis started with a random distribution of fibers within the representative volume element
(RVE), followed by two regular distributions: hexagonally packed and square packed. An algorithm using Python generated the
random fiber distribution within RVE, considering the fibers have perfectly circular cross-sections. The fiber volume fraction within
the RVE was varied from 0.1 to 0.5, and the effects on the properties of the composite were evaluated. Rule of Mixtures (ROM)
was employed to determine the longitudinal modulus and Poisson’s ratio, while Halpin-Tsai equation was applied for the transverse
modulus and shear modulus. These analytical solutions were then compared with FEA results. It is observed from the present
analysis that with fiber volume fraction increased from 10% to 50% the effective properties also increased, for instance E;; for
random distribution increased from 11.76 GPa to 39.5 GPa, except the Poisson’s ratio, which decreased to 0.25 from 0.32.
Comparing with the other distribution, Random distribution exhibited superior load carrying capacity.
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1. Introduction

Composite materials, essential in engineering for their
superior performance, are widely used in automobiles,
spacecraft, and sports equipment. Unidirectional composites
are specifically valued and considered transversely isotropic
homogeneous materials in many applications [1]. These
composites possess distinctive characteristics, meeting high
demand more efficiently and profitably than regular materials.
Advantages include stable homogeneous properties, reduced
production costs, decreased weight, and improved impact and
fatigue resistance [2]. Traditional materials often require extra
strength in non-load-bearing directions, adding unnecessary
cost and weight to structures [3]. Homogenization of elastic
properties for composites is a very important phase of the
process of any composite material structure. For instance,
micromechanical model equations are proposed by Chamis [4],
and the asymptotic mean-field homogenization are proposed
by Mori-Tanaka [5]. FEA techniques including the RVE
homogenization method are more precise, extensively used to
forecast the effective elastic property of composites, and have
emerged as the standard procedure for dealing with composite
materials [6, 7]. Utilizing micromechanics, Bednarcyk, B.A.
and Arnold forecasted deformation and failure for titanium
composites with longitudinal reinforcement [1]. Kok, de
J.M.M. and Meijer, H.E.H studied the effect of fiber volume
fraction and test temperature for the effective transverse
mechanical properties for epoxy matrix embedded with glass
fiber by both experimental and numerical methods [8].
Christoph Unterweger, Oliver Briiggemann, and Christian
Fuerst studied the influence of many kinds of fibers and their

volume fractions for the short fiber-reinforced polypropylene
composites [9]. Sonparote PW and Lakkad SC investigated
the various mechanical properties (tensile, compressive,
flexural etc.) of a hybrid composite [ 10]. Lamon, J, determined
the mechanical behavior of brittle- matrix composites on the
basis of micro mechanics approaches [11]. Sun, H., Di, S.,
Zhang, N. and Wu, C. proposed a new way to predicting the
effective mechanical properties for composite materials by
using incompatible multivariable FEM and homogenization
theory [12]. Jamal, and Mirbagheri investigated the elastic
modulus of short natural fiber hybrid composites using the
hybrid rule of mixture [13]. Ramesh M, Palanikumar K,
Hemachandra Reddy K. evaluated the mechanical properties
for the sisal-jute-glass fiber reinforced in polyester matrix
composites [ 14]. Li, S. used two types of standardized unit cell
model (Square and hexagonal) for micromechanical analysis
of unidirectional composite [3]. Bonora, N. and Ruggiero, A.
investigated the unit cell model development and also the
effect of manufacturing process by using the micromechanical
model of composites with mechanical interface [15]. Drago,
A. and Pindera, M.-J. used the micro-macromechanical
analysis technique for heterogeneous materials and compared
the result for two cases macroscopically homogeneous and
periodic micro structur.[16]. Wongsto, A. and Li, S. setup a
systematic way for micromechanical analysis of UD fiber
reinforced composites for random distribution of fiber [17].
To forecast the effective stiffness of fiber reinforced
composites with perfect fiber orientation, the Halpin—Tsai
approach is often utilized. Halpin-Tsai equations are used here
for predicting transverse elastic modulus and shear modulus.
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The following are the standard versions of Halpin—Tsai
equations [19].
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In this case, P symbolizes the effective property of the
composite [19,20]. Nevertheless, these procedures are not
equipped to make room for the consequences of geometrical
modifications of component materials at the micro level. The
microscopic structure of materials directly influences their
behavior in many ways. Therefore, this work aims to analyze
three composite systems: random, hex-packed, and square
packed to determine their effective elastic properties as well
as to create glass fiber-reinforced epoxy composites with
desired characteristics for specific applications by utilizing
ABAQUS CAE software [21].

2.0 Computational Modeling
2.1 Governing Equation

Within the RVE macro-stresses and macro-strain are
related to each other by the following equation.

o =[c)e"} G)

Every RVE gets applied to six different macrostrains in this
procedure. For every imposed non-zero macrostrain, periodic
boundary conditions typically applied to ensure that all the
other macrostrains are zero [22]. The matrix [C] can be
inverted to get our intended compliance matrix[S].
Compliance is the inverse property of stiffness.
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2.2 Material Properties

The composite E-glass fibers are used as reinforcement
within the matrix while for the matrix Epoxy resins is used.
Their elastic mechanical properties are given below in a table

[8].

Table 1 Elastic properties of materials.

Property E-Glass fiber Epoxy
Elastic modulus, E1; (GPa) | 72.4 35
Poisson’s ratio, vi» 0.2 0.35

2.3 Physical Aspect of the Model

For each type distribution, five RVE are designed for five
distinct volume fractions of fibers (0.1, 0.2, 0.3, 0.4 & 0.5).
Several fibers are taken to ensure better randomization in
Random distribution. For any given fibers volume fraction,

total number of fibers can be calculated from the following
equation

v 5)
nf - r2
7ry

Table 2 Models for Random Distribution of Fibers.

Distribution | Model | vy | rr(um) ny
type No.
01 0.1 5
02 102 11
Random 03 0.3 8 15
04 104 21
05 105 26

Fig-1(a) representing the unit cell for random distribution of
fibers is epoxy matrix, where the volume fraction of E-glass
fibers is 0.4 or 40%. Locations for each fiber are determined
by using a Python algorithm.

D= 16 um
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a=100.26513um

4172825 um
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©

Fig. 1 Front view and meshing of model-4 for volume
fraction of 0.4 (a) random (b) hexagonal and (c) square

Fig. 1(a) shows Random Distribution Model No-04 with a
40% fiber volume fraction, using hex-dominant meshing. This
technique prioritizes hexahedral elements (C3D8), an 8-node
linear brick element, to create high-quality meshes. Fig. 1(b)
illustrates the representative volume element (RVE) where E-
glass fibers are hexagonally packed, generated using a micro-
mechanics plugin. The unit cell's dimensions are 41.72825 pm
(length), 24.09182 um (width), and 5 pm (depth), with a fiber
radius of 8 um. For square-packed fibers, the unit cell is
31.70662 pm with fibers arranged regularly. Both models
assume perfect fiber-matrix interaction. Fig. 1(c) shows the
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unit cell for the composite model, also meshed with C3D8
elements.

2.4 Boundary Condition

In this analysis, periodic boundary conditions (PBCs) are
applied to each model. PBCs are a common technique used to
approximate the behavior of an infinite or large system by
analyzing a representative small portion which is known as
representative volume element (RVE). This method is widely
employed in finite element analysis to ensure the modeled
region behaves consistently with the larger system.

(a) (b) (c)

(d) (e) (f)

Fig.2: The displacement boundary conditions applied to
determine the effective elastic characteristics are depicted
schematically. (a) for Ei1, (b) for Ex, (¢) for Es3, (d) for Gz,
(e) for Gis, (f) for Gz

2.5. Result Verification:
For accuracy of the system that is used for current work, a
published research paper is chosen and verified [22].
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Fig.3 Comparison of current work with the work [22] for
(a)longitudinal elastic property E1; and (b) shear modulus,
G12

In Fig. 3(a) longitudinal elastic modulus from published paper
and current work are compared. Shape and nature of the
current study graph are perfectly agreed with the published

work. Both are linearly varying with the volume fraction.
From the Fig 3(b), it is noticeable that both graphs G, and
Giz(paper) have the increasing trend(non-linear) as the volume
fraction increases. In most of the cases, deviation of the current
work data from the published data is within 20%.

2.6 Mesh Dependency Test

Figure 4 indicates that the elastic constant E11 fluctuates
below 500,000 elements, peaks at 34.651 GPa about 600,000,
and then stabilizes around 1.3 million. For accuracy and
minimal duration of simulation, 1 million elements are chosen
as the most optimal number.
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Fig.4 Variation of longitudinal elastic property E; with
element number.

3. Result and Discussions
3.1 Effect of Volume fraction of Fiber on Longitudinal
and transverse Elastic Modulus

Random fiber distribution, from Fig.5(a), consistently
achieves the maximum longitudinal elastic modulus
throughout all volume fractions, from about 11.76 GPa at 0.1
volume fraction to about 39.5 GPa at 0.5 volume fraction,
according to the examination of fiber distributions. This
linear rise predicts improved stiffness and load transmission
because the fibers are aligned favorably in numerous
directions. On the other hand, an identical linear trend can be
seen in hexagonal packing, where moduli gradually rise from
around 10.4 GPa at 0.1 to roughly 38 GPa at 0.5. Compared
to random distributions, hexagonal packing offers reasonable
stiffness, but its evenly distributed organization restricts
elasticity. With a starting point of around 10.53 GPa and a
peak of about 38 GPa at 0.5 volume percent, square packing
exhibits the lowest elastic modulus. Its lower performance
can be credited to geometric arrangement-related inefficient
load transmission. Elastic modulus may be approxima
directly using the Rule of Mixtures (RoM):

Ey=EV, +EV,,

which predicts values ranging from around 10.39 GPa at 0.1
to 37.95 GPa at 0.5. Fig.5(b) shows both the analytical and
finite element analysis (FEA) solutions for the transverse
elastic modulus E22. Unlike E11, E22 does not vary linearly.
Instead, E22 shows a non-linear rising trend with the
increase of volume fraction. The Rule of Mixtures (RoM)
cannot accurately predict the analytical solution for E22,
making it unsuitable for this task, hence a semi empirical
relation named Halpin Tsai is used. The study of the
transverse elastic modulus E22 as a function of volume
fraction for three fiber configurations demonstrates
noticeable patterns. As the volume percentage grows, the
fibers start interacting more strongly, which will increase

401



A.B. M. T. R. Sakib, M. S. Islam and M. J. N. Shadman /SCSE Vol. 3, 2025, pp 399-404

elasticity; however, this improvement does not continue
linearly due to the constraints and deformation of the
surrounding matrix.
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Fig.5 Effect of volume fraction of fiber on (a) longitudinal
elastic modulus E11, (b) transverse elastic modulus E22
and (c) E33
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At 0.1 volume fraction, the recorded E;; values are as
follows(approximately): Random: 4.56 GPa, hexagonal: 4.4
GPa, square: 4.35 GPa, Halpin-Tsai: 4.33 GPa. The random
structure provides the better performance as compared to the
square arrangement. After volume fraction of 0.3, the results
vary even further. At a maximum volume fraction of 0.5, the
moduli are as follows: random: 11.5 GPa, hexagonal: 9.5
GPa, square: 8.1 GPa, and halpin-tsai: 10.7 GPa. The random
fiber arrangement consistently achieves the largest E22
values, with a non-linear increase as the volume percentage
increases. While initially competitive, the hexagonal
arrangement falls behind with increased fiber concentration,
whereas the square structure stays at the lowest throughout
all fractions. The Halpin-Tsai model closely resembles
random behavior but tends to downplay other configurations
considerably. Figure 5(c) shows that the fluctuation of E33
with respect to volume fraction follows a similar trend as that
of E22. The modified Halpin-Tsai equation is used to get the
analytical solution for E33, which is then compared to the
FEA findings. At a volume fraction of 0.1, the moduli are:
Random (4.5 GPa), Hexagonal (4.4 GPa), Square (4.37 GPa),
and Halpin-Tsai (4.33 GPa). The random layout has the
largest modulus, whereas the square arrangement is the least

effective. At the greatest volume fraction of 0.5, the values
are: Random: 11.08 GPa, Hexagonal: 9.42 GPa, Square: 8.14
GPa, and Halpin-Tsai: 10.96 GPa. The random configuration
reaches 11.0 GPa, whereas the square arrangement stays
substantially lowerest. The random distribution findings
correspond better with the analytical solution, but the other
two configurations deviate from it. In both cases E22 and
E33, fibers are aligned perpendicular to the load direction,
resulting in a more complicated load transmission
mechanism. At low volume fractions, the matrix material can
deform greatly, and the fibers' effect on stiffness may not be
completely reflected. As additional fibers are packed into the
matrix, their organization and interaction can cause
nonlinear effects. At a greater volume percentage, the
possibility such as fiber-fiber interaction, matrix yielding, or
non- uniform stress distribution might become prominent,
resulting in a divergence from the linear elastic modulus
change.

3.2 Effect of Volume fraction of Fiber on Poisson Ratio
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Fig .6 Effect of volume fraction of fiber on Poisson ratio,
(a) Vi2, (b)V13 and (C) V23

Analytical solution of Poisson’s ratio v;z, v;3, and v,3 were
determined with the help of Rule of mixture. Results from
the Finite element analysis then compared with the analytical
one obtained from role of mixture. Fig.6(a), (b), and (c)
shows a declining trend for each: vz, v;3, and v»3 as volume
fraction increases. In every case, the Rule of Mixture’s
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findings are in excellent agreement with the FEA solutions.
As the volume fraction increases from 0.1 to 0.5, Poisson’s
ratio decreases across all the configurations. At a volume
fraction of 0.1, the values of v, are approximately 0.32 for
Random and Square, 0.33 for Hexagonal, and 0.34 for RoM.
At avolume fraction of 0.5, the Poisson’s ratio drops to about
0.25 for Random and Square, 0.26 for Hexagonal, and RoM.
RoM as a idealized prediction remains higher than any other
configuration throughout all the cases. Interaction between
matrix and fiber, which is much stiffer than matrix, causes a
lowering Poisson’s ratio. As the volume fraction increases,
fibers resist deformation more efficiently, lowering lateral
strain and this leads to decreased Poisson’s ratio.

3.3 Effect of Volume fraction of Fiber on Shear Modulus

First of all, analytical solutions for shear modulus are
obtained using Halpin Tsai equation and then compared with
the FEA solutions. Variations of Gz, Gi3 and Gz3 with
volume fraction of fibers are showing below
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Fig.7 Effect of volume fraction of fiber on shear modulus
(a) Gi1, (b) G2z and (¢) G33

Fig.7(a), (b) and (c) provide a comprehensive analysis of the
shear modulus G2, Gi3, and Gy3 of composite materials in
terms of fiber volume fraction for different configurations.
Mechanical performance of these composites is compared
using theoretical and empirical models such as the Halpin-
Tsai equation and different fiber packing geometries. The
general trend indicates that the shear modulus increases with

the fiber volume fraction for all configurations, as predicted.
Results indicate that both fiber arrangement and volume
fraction have a significant impact on shear modulus, with
random packing providing the largest modulus values and
square packing resulting in the smallest. For G2, at a volume
fraction of 0.1, the shear modulus is approximately 1.6 GPa,
and it increases to about 3.9 GPa at a volume fraction of 0.5.
The enhanced modulus for the random packing can be
attributed to the more isotropic distribution of fibers, which
provides a more uniform stress distribution under shear
loading. The hexagonal fiber arrangement exhibited a
slightly lower shear modulus compared to the random
arrangement but is still significantly higher than the square
packing. At a volume fraction of 0.1, the modulus is
approximately 1.65 GPa, increasing to 3.5 GPa at a volume
fraction of 0.5. The square fiber arrangement showed the
lowest shear modulus values across all volume fractions.
Initially, at low volume fractions, fiber-matrix interaction is
weak, and the matrix dominates mechanical properties. At
higher fiber volume fractions, interactions between fibers
increase, particularly in random and hexagonal arrangements,
further enhancing stiffness non-linearly.

5.0 Conclusion

The micro-mechanical modeling approach was used to
investigate the homogenized mechanical properties of the
epoxy composite reinforced with e-glass fibers. The
influence of fiber volume fraction and arrangement on the
effective elastic properties of composites has been found
using for random, hex-packed, and square packed:

e Increasing the volume fraction of e-glass fibers
considerably increase the elastic modulus of the
composite.

e Among the three configurations (random, hex-
packed, square packed), random distribution
demonstrated exceptionally good alignment with
the analytical solution.

e The variation of the longitudinal elastic modulus,
Ei1, was found to be linear, showing a sharp
increase from 10 GPa to approximately 40 GPa as
the fiber volume fraction increased from 10% to
50%.

e A similar trend was obtained for the transverse
elastic moduli, E»; and Es3, both increasing from 4
GPa to around 12 GPa as the fiber volume fraction
rose from 10% to 50%.

e Poisson’s ratio was found to decrease (from
approximately 0.34 to 0.26) as the volume fraction
of fiber increased. The overall stiffness of the
composite increased with higher volume fraction
which resulted in smaller lateral deformation hence
the Poisson’s ratio.

e  Shear moduli (G2, Gi3, and G23) were found to
increase non linearly (roughly from 1.5GPa to
4.3GPa) as the as volume fraction of fibers went
10% to 50%.
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Nomenclature

Py @ characteristics of fibers
Pw:  characteristics of matrix
Vr:  volume fraction
€ : geometry parameter
[C]:  stiffness matrix.

M. macro-stress
eM:  macro-strain
nr :  total number of fibers
rr . radius of fibers
A : cross-sectional area
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