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ABSTRACT   

Ensuring consistent raw material quality is a significant challenge in chemical manufacturing, particularly for medicinal 

compounds where safety and efficacy are paramount. In these situations, a unique methodology known as Statistical Process Control 

(SPC) come into play. This study provides statistical process control analysis of four critical operational parameters for most the raw 

chemical compounds, especially in the medicinal chemistry— Specific Optical Rotation (SOR), Water Content (WC), RI, and 

Chromatographic Purity (CP)—derived from a dataset of 26 observations in an applied engineering context. The methodology 

encompasses descriptive statistics, rigorous distribution identification using Goodness-of-Fit tests, and process stability assessment via 

Individual- Moving Range (I-MR) and Exponentially Weighted Moving Average (EWMA) control charts. Descriptive statistics 

revealed diverse data characteristics, notably the high positive skewness (2.623) and kurtosis (9.386) of WC (Mean ± Standard 

Deviation: 0.177±0.106987) and the presence of negative values for SOR (Mean: -0.1, Min: -2, Max: 2). Distribution fitting identified 

Logistic and Normal as the most suitable for SOR, while RI demonstrated a best fit for normal distribution with Johnson 

Transformation. WC and CP exhibited significant non-normality and challenges in fitting standard distributions, often accompanied by 

warnings regarding convergence or parameter estimation stability. Crucially, control chart analysis identified significant out-of-control 

conditions for SOR, WC, and RI, indicating inherent process instability. CP, conversely, demonstrated stability with the optimized 

EWMA chart. The findings underscore the necessity of tailored statistical approaches for diverse data characteristics in quality control. 

Implementation of Statistical Process Control should not be underestimated in the chemical manufacturing industry, notably in the 

developing nations. 

Keywords: Statistical Process Control, Distribution Fitting, Chemical Purity, Control Charts, Specific Optical Rotation, Water 

Content. 
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1 Introduction   

In modern applied science and engineering, particularly 

within the chemical manufacturing industry, the diligent 

monitoring and control of quality characteristics are paramount 

to ensuring predictable product properties, efficacy, and safety 

[1]-[3]. Statistical Process Control (SPC) offers a robust 

framework for understanding process variation, identifying 

special causes, and driving continuous improvement efforts 

[4],[5]. A fundamental aspect of SPC involves characterizing the 

statistical distribution of critical process parameters, as this 

understanding directly influences the appropriate selection and 

interpretation of control charts [6],[7]. Failure to account for the 

underlying data distribution can lead to erroneous conclusions 

regarding process stability and capability [8],[9]. Importantly, 

Shewhart charts are basically used in monitoring and controlling 

the inspection properties. For instance, in the medicinal chemical 

industry, uncontrolled variation in the optical rotation of a chiral 

drug intermediate can lead to a final product with reduced 

efficacy or unintended side effects, underscoring the critical need 

for robust statistical monitoring. 

This study aims to provide a comprehensive statistical 

analysis of four critical operational parameters: Specific Optical 

Rotation (SOR), Water Content (WC), Residue on Ignition (RI), 

and Chromatographic Purity (CP). These parameters, derived 

from an anonymized dataset of 26 observations, are 

representative of challenges encountered in real-world industrial 

settings. The objectives include: (1) describing the fundamental 

statistical characteristics of each parameter; (2) identifying the 

most appropriate statistical distribution for each parameter using 

screening of goodness-of-fit tests; and (3) assessing the process 

stability of each parameter through the application of appropriate 

control charting methodologies, considering their unique 

distributional properties and physical boundaries. The findings 

will highlight the complexities inherent in real-world 

engineering data and emphasize the critical role of rigorous 

statistical analysis in identifying process deviations and guiding 

effective quality management and improvement initiatives. 

2 Materials and Method 

2.1 Data Collection and Variables 

The study utilized an anonymized dataset consisting of 26 

observations for four critical operational parameters: SOR, WC, 

RI, and CP. These parameters represent key quality attributes or 

process indicators within an applied engineering context, 

especially in medicinal chemical compound manufacturing, with 

official limiting acceptance criteria of –2 - +2, ≤0.5%, ≤0.1%, 

and ≤0.5%, respectively [10],[11]. 

2.2 Statistical Software 

All statistical analyses, including descriptive statistics, 

distribution identification, goodness-of-fit tests, and control chart 

construction, were performed using Minitab® version 17.1.0 

statistical software [12]-[14]. 

https://doi.org/10.38032/jea.2025.03.004
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2.3 Descriptive Statistics 

For each operational parameter (SOR, WC, RI, CP), 

standard descriptive statistics were computed, including sample 

size (N), number of missing values (N*), Mean, Standard 

Deviation (StDev), Median, Minimum, Maximum, Skewness, 

and Kurtosis. These metrics provide an initial understanding of 

the central tendency, variability, and shape of the data 

distribution [15],[16]. 

2.4 Distribution Identification and Goodness-of-Fit Tests 

To identify the most appropriate statistical distribution for 

each parameter, the Anderson-Darling (AD) goodness-of-fit test 

was primarily employed, along with corresponding P-values 

[17]. Various theoretical distributions were considered, including 

Normal, Logistic, Lognormal, Weibull, Gamma, Exponential, 

Extreme Value, and Loglogistic. Where necessary, data 

transformations such as Box-Cox and Johnson transformations 

were explored to achieve better distributional fits for non-normal 

data [18],[19]. The selection of the "best-fit" distribution was 

based on the highest P-value from the AD test (P > 0.05 generally 

indicates a good fit), in conjunction with an assessment of the 

visual fit of the probability plot and, critically, the chemical or 

physical interpretability of the distribution's parameters, 

particularly thresholds. 

2.5 Process Control Strategy 

Control charts were selected based on the distribution 

characteristics of each parameter, adhering to principles of 

process validation and regulatory compliance [20]-[23]. The 

general workflow for control chart selection is visually 

represented in Fig.  1: An Individuals and Moving Range (I-MR) 

chart was employed, as the data demonstrated validated 

normality based on (Anderson-Darling (AD), p).  

 

Fig.  1 Proposed selected scheme of workflow for the selection 

of control charts. 

 

The Individual-Moving Range (I-MR) chart is suitable for 

continuous data that is approximately normally distributed 

[24],[25]. In other case(s), an I-MR chart with a 3-parameter 

loglogistic distribution would be selected. This choice was 

driven by the inherent physical boundary of some datasets e.g. 

water content (cannot be negative or truly zero due to 

measurement precision) and the distribution's threshold 

parameter matching the observed data minimum. This approach 

provides chemically defensible control limits for bounded non-

normal data [24],[26].  

Thirdly, an I-MR chart could be applied to Johnson-

transformed data. This approach is valid when transformation 

yielded a statistically acceptable AD P-values, indicating a good 

fit after transformation [18],[27]. This method is suitable for 

zero-inflated or highly non-normal data that can be normalized 

via transformation. However, when none of the previous 

solutions deemed possible or valid, an Exponentially Weighted 

Moving Average (EWMA) chart with a smoothing parameter 

(λ=0.2) might be employed [28]-[30]. This choice was made due 

to the parameter's persistent non-normality after various 

transformation attempts, the absence of chemically meaningful 

physical boundaries for threshold distributions, and the 

robustness of EWMA charts to mild departures from normality 

[29],[30]. Control limits for all charts were established to respect 

pharmacopoeial specifications where applicable (SOR: ±2.0°; 

WC: ≤0.5%; RI: ≤0.1%; CP: ≤0.5%) [10],[11]. 

3 Results and Discussion 

The selected quality tests are very common inspection 

properties to be monitored and investigated in many raw 

chemical compounds, notably those materials that are 

manufactured in medicinal chemical plants [10],[11]. Economic 

vulnerabilities experienced by developing economies frequently 

translate into difficulties in upholding dependable supply chain 

infrastructures [31],[32]. A common response involves 

diversifying resource procurement, a strategy that, while 

addressing immediate needs, can inadvertently introduce factors 

that diminish the consistency and predictability of product 

quality [33],[34]. In the current model, there are five sources 

from three countries. 

3.1 Descriptive Statistics 

The descriptive statistics for the four operational parameters 

are summarized in Table 1 include the presence of negative 

values for SOR (Min: -2, Max: 2), indicating a parameter that can 

vary around zero which is normally expected for this kind of 

quality properties. WC exhibits significant positive skewness 

(2.623) and high kurtosis (9.386), suggesting a distribution with 

a long tail to the right and more extreme values than a normal 

distribution. RI has a minimum value of 0, indicating potential 

zero-inflation. CP shows relatively low skewness (0.32) and 

kurtosis (0.23) compared to WC, hinting at a distribution closer 

to symmetry. 

3.2 Distribution Identification and Goodness-of-Fit Analysis 

The goodness-of-fit test results for each parameter, along 

with associated transformations and warnings, are detailed below 

and summarized in Table 2. For SOR, the Normal distribution 

(AD = 0.549, P = 0.143) and Logistic distribution (AD = 0.473, 

P = 0.200) both provided good fits, with P-values greater than 

0.10. The Logistic distribution showed the highest P-value, 

suggesting a slightly better fit.  
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Table 1 Summary of Descriptive Statistics for Operational Parameters. 

Parameter N N* Mean StDev Median Minimum Maximum Skewness Kurtosis 

SOR 26 0 -0.1 0.931665 0 -2 2 0.0678385 0.580102 

WC 26 0 0.177 0.107293 0.165 0.1 0.6 2.623 9.386 

RI 26 0 0.043 0.024504 0.04 0 0.09 0.104 -0.73 

CP 26 0 0.443 0.075486 0.44 0.3 0.6 0.32 0.23 

*Missing values       

StDev: Standard Deviation 

Table 2 Goodness-of-Fit Test Results and Maximum Likelihood (ML) Estimates for Operational Parameters (Selected 

Distributions). 

Parameter Distribution Type AD P LRT P¥ Location Scale Threshold 

SOR 

Normal 0.549 0.143 - -0.10000 0.93167 - 

Logistic 0.467 0.200 - -0.11032 0.50262 - 

3-Para Lognormal 0.544 * - 3.91248 0.01826 -50.13132 

WC 

Normal 2.752 <0.005 - 0.17692 0.10699 - 

Box-Cox (λ=-1) 3.104 <0.005 - 7.05128 2.87934 - 

3-Parameter Loglogistic   4.017   * 0.000 -13.26616             8.09740     0.10000 

RI 

Johnson Trans. 0.545 0.146 - 0.09165 0.82127 - 

2-Para Exp. 0.885 0.103 - - 0.02920 -0.00112 

Normal 1.269 <0.005 - 0.02808 0.02757 - 

CP 

Normal 0.899 0.018 - 0.26885 0.13058 - 

Logistic 0.912 0.009 - 0.26878 0.07395 - 

Box-Cox (λ=0.5) 1.248 <0.005 - 0.50208 0.13203 - 
Note: Only selected distributions are shown for brevity. Warnings indicate potential issues with parameter estimation or model reliability. 

Asterisk (*): An asterisk in Minitab output, particularly in goodness-of-fit tables, generally signifies that a specific value (like a p-value or a statistic) could not be 

calculated.  

¥LRT P (Likelihood-Ratio Test p-value): This value helps determine if a distribution with more parameters (e.g., a 3-parameter distribution) offers a significantly better 
fit for selected data compared to a simpler version (e.g., a 2-parameter distribution) of the same family. If the LRT P-value is less than the significance level (commonly 

0.05), it indicates that adding the extra parameter significantly improves the distribution's fit. If the LRT P-value is greater than the significance level, there isn't enough 

evidence to conclude that the additional parameter provides a significant improvement. 
 

Several other distributions (Exponential, Lognormal, 

Weibull, Gamma, Loglogistic) could not be fitted due to the 

presence of non-positive values in the data. Warnings regarding 

non-convergence of the Newton-Raphson algorithm were noted 

for 3-Parameter Lognormal and 3-Parameter Gamma, and issues 

with the Variance/Covariance matrix for 2-Parameter 

Exponential and 3-Parameter Gamma. No Box-Cox or Johnson 

transformation was selected due to the acceptable fit of the 

original data to standard distributions [35]. It is important to note 

that with a limited sample size (N=26), a failure to reject the null 

hypothesis (p > 0.05) indicates that the distribution is plausible, 

not that it is definitively the true underlying distribution. The 

final selection also heavily relied on probability assessment and, 

most critically, the chemical interpretability of the distribution's 

parameters. 

While WC data consistently rejected all standard 

distributions (e.g., Normal AD=2.752, p<0.005; Logistic 

AD=2.338, p<0.005), the 3-parameter loglogistic 

(threshold=0.10000) was specifically selected for control 

charting based on a rigorous engineering rationale. The strong 

right-skewness (2.623) and high kurtosis (9.386) of the WC data 

indicated a non-normal, heavy-tailed distribution bounded 

below. Attempts to normalize the data via Box-Cox 

transformation (λ=-1) also failed (AD=3.104, p<0.005), further 

supporting the need for a non-traditional approach. The selection 

of the 3-parameter loglogistic was driven by its threshold 

parameter (0.10000) aligning precisely with the physical 

minimum observed in the data (0.1%), representing a 

physicochemical boundary (0% water content is impossible in 

practical measurement). This provided chemically defensible 

control limits, notably a Lower Control Limit (LCL) of 0.10% 

and an Upper Control Limit (UCL) of 0.52%. Despite Minitab 

reporting covariance matrix warnings for the 3-parameter 

loglogistic, the threshold's alignment with the data minimum 

provides industrial validity [24],[26],[36]. 

A Johnson transformation was successfully applied to the RI 

data, resulting in a statistically valid fit (AD=0.545, P = 0.146). 

This transformation effectively normalized the data, which is 

crucial for the appropriate application of I-MR control charts. As 

with SOR, some distributions (Exponential, Weibull, Gamma, 

Loglogistic) could not be fitted due to non-positive values, and 

warnings regarding the Variance/Covariance matrix were noted 

for 2-Parameter Exponential, 3-Parameter Weibull, 3-Parameter 

Gamma, and 3-Parameter Loglogistic. The CP data exhibited 

characteristics of non-normality (Descriptive Statistics: 

Skewness = 0.3246, Kurtosis = 0.0790; Min = 0.1, Max = 0.6, 

Median = 0.3). The formal Anderson-Darling test for the normal 

distribution yielded an AD statistic of 0.899 with a P-value of 

0.018, which is below the standard 0.05 significance threshold, 

thus rejecting normality. Attempts to normalize the data via Box-

Cox transformation (λ=0.5) also failed, resulting in an AD of 

1.248 (P < 0.005), confirming that transformation was not a 

suitable solution for achieving normality. 

While a 3-parameter loglogistic distribution for CP was 

explored (AD=0.964, LRT P-value=0.141), which some 

literature suggests is sensitive to distribution tails [37],[38], it 

presented a critical challenge. The estimated threshold parameter 

was -2.05782, implying a possibility of negative purity. This 
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value is chemically impossible as purity cannot be below 0%. 

Such a physically meaningless parameter invalidates the model 

for deriving chemically defensible control limits or for 

calculating reliable process capability indices (Pp/Ppk), despite 

the statistically acceptable LRT P-value (0.141) [24],[39]. This 

fundamental violation of physical reality rendered the 3-

parameter loglogistic unsuitable for CP's control charting. 

Consequently, a distribution-agnostic EWMA chart was selected 

as the most statistically and scientifically defensible choice for 

CP due to its robustness to non-normality and lack of reliance on 

a physically unrealistic distributional fit [29]. 

3.3 Process Capability and Control Chart Results 

From practical experimentation it is not uncommon to find 

a set of results that violate the theoretical distribution required for 

industrial quality processing and interventions such as control 

charts. Thus, the present study provides diverse approaches to fit 

data into an appropriate control chart based on its nature and 

distribution.  

SOR: The I Chart for SOR indicated an out-of-control 

condition, with Test 1 (One point more than 3.00 standard 

deviations from center line) failing at point 16. The control limits 

for SOR were Upper Control Limit (UCL)=1.95, Control Limit 

(CL)=-0.1, LCL=-2.15. This suggests that the SOR process is not 

stable and exhibits special cause variation.  

WC: The 3-parameter loglogistic I-MR chart for WC 

detected a special cause, with point 3 extending beyond the 

acceptance criterion of 0.50%. The control limits for WC were 

LCL=0.13%, CL=0.18%, UCL=0.50%. This indicates an out-of-

control condition for water content, exceedingly even the 

specification limit of 0.5%. The estimated parameters for the 3-

parameter loglogistic were Location: -13.26616, Scale: 8.09740, 

and Threshold: 0.10000 

Table 3 shows a summary of the control charts used for the 

inspected quality characteristics with the excursions observed in 

Fig.  2 to Fig.  5.  

RI: Both the Johnson-transformed I Chart and MR Chart for 

RI showed special causes. Test 1 failed at points 13 and 14 for 

the I Chart, and at points 13 and 15 for the MR Chart. The 

Johnson transformation function used was: 0.748029 + 0.560843 

× Ln((X + 0.00443024) / (0.105185 - X)). These findings 

indicate severe instability in the RI process, suggesting it is 

operating under the influence of assignable causes of variation. 

The Johnson-transformed I-MR showed identical special causes 

to the raw data I-MR (points 13-15), confirming the presence of 

these signals regardless of transformation.  

Table 3 Summary of Control Chart Test Results for 

Operational Parameters. 

Parameter Chart Type Test “1” Failed Points 

SOR I-MR 16 

WC I-MR (Loglogistic) 3 

RI I-MR (Transformed) 13,14 (I); 13,15 (MR) 

CP EWMA None 

 

 

Fig.  2 I-MR Chart of SOR. This chart displays individual 

values and moving ranges for the SOR parameter. The red point 

on the I Chart (top) indicates an out-of-control condition at 

observation 16, where a single point exceeds the upper control 

limit (UCL=1.953), signaling a special cause of variation. 

 

Fig.  3 I-MR Chart for WC. This chart presents the individual 

values and moving ranges for the Water Content (WC) 

parameter. The I Chart (top) shows an out-of-control condition 

at observation 3, where a point exceeds the upper control limit 

(UCL=0.4980), indicating process instability. 
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Fig.  4 I-MR Chart for RI with Johnson Transformation. This 

chart illustrates the individual values and moving ranges for the 

Residue on Ignition (RI) parameter after applying Johnson 

Transformation. The I Chart (top) shows out-of-control points 

at observations 13 and 14, while the Moving Range Chart 

(bottom) shows out-of-control points at observations 13 and 15, 

indicating significant instability in the RI process. 

 

Fig.  5 EWMA Chart of CP. This chart displays the 

Exponentially Weighted Moving Average (EWMA) for the 

Chromatographic Purity (CP) parameter. All points remain 

within the control limits (UCL=0.3727, LCL=0.1649), 

indicating that the CP process is in a state of statistical control 

and is stable. 

CP: The EWMA chart for CP showed no special causes, 

indicating that the chemical purity process was in a state of 

statistical control and stable over the observed period. The 

control limits for CP were approximately UCL=0.37, CL=0.27, 

LCL=0.17. 

The analysis reveals critical insights into the statistical 

characteristics and control of the operational parameters 

investigated. The diverse distributional properties and varying 

degrees of process stability underscore the necessity for a tailored 

SPC approach (Fig.  6) rather than a one-size-fits-all 

methodology [24]. While some inspection characteristics could 

be described by charts with normal distribution prerequisites, 

other parameters are not straightforward and require different 

approaches. A core difference in the statistical treatment arises 

from Physical Boundaries versus Distribution Validity for 

parameters like WC and CP. These require fundamentally 

different approaches due to inherent physical boundaries, 

parameter interpretability, and regulatory implications. For 

instance, why 3-Parameter Loglogistic might be selected for 

WC.  The selection of the 3-parameter loglogistic distribution for 

WC, despite challenges with fitting standard distributions, was 

based on a rigorous engineering rationale. A specific comparison 

between these two parameters is summarized in Table 4 

depicting this dilemma. The core difference in the statistical 

treatment of WC and CP, both non-normal, arises from the 

physical interpretability of the distribution parameters, which 

dictates the fundamental choice of method. This dichotomy is 

summarized in Table 4. 

 

Fig.  6 Process stability infographic summarizes the final 

assessment of the inspection characteristics. 

Table 4 Direct comparison between the 3-parameters 

loglogistic approach of WC and CP control charts. 

Criterion 
Water Content 

(WC) 

Chromatographic 

Purity (CP) 

Physical 

Boundary 

Absolute 0% 

(cannot be <0) 

No hard boundary 

(can be 0%) 

Threshold 

(θ) 

0.10000 (matches 

min data) 
-2.05782 (invalid) 

Parameter 

Meaning 
Chemically valid Chemically absurd 

Goodness-of-

Fit 

Best available 

option 

Statistically valid but 

unusable 

Control 

Limits 

LCL=0.10% 

(defensible) 

LCL=-1.2% 

(indefensible) 
 

1. Data-Driven Rationale: WC data exhibited strong right-

skewness (2.623) and high kurtosis (9.386), indicating a 

heavy-tailed, non-normal distribution. The range of 0.1% 

to 0.6% highlighted a natural lower bound. Attempts to 

normalize the data via Box-Cox transformation (λ=-1) 

also failed, showing an AD of 3.104 with p<0.005). The 

3-parameter loglogistic inherently models such right-

skewed data and, critically, allows for a threshold 

parameter. 

2. Physical Boundary Alignment: Water content cannot be 

negative (0% represents an absolute physical limit). The 

3-parameter loglogistic’s threshold parameter (0.10000) 
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directly aligns with the observed data minimum of 0.1%, 

anchoring the distribution at this boundary and preventing 

the calculation of impossible negative values in control 

limits. This provides chemically defensible control limits 

[26]. 

3. Engineering Justification for Control Chart Choice: 

o Avoiding Normality-Based Charts: Shewhart/I-MR 

charts, which assume normality, would lead to false 

alarms for highly skewed data like WC. The strong 

rejection of the normal distribution (AD=2.752, 

p<0.005) reinforced this decision. 

o Exclusion of EWMA: While EWMA charts are 

robust to non-normality, they are distribution-

agnostic. For critical quality attributes like WC, batch 

release decisions often require exact probabilistic 

limits (e.g., the probability of WC exceeding a 

specification limit). EWMA cannot directly provide 

such distribution-specific probabilities. 

4. Regulatory Compliance: 

o ICH Q9 guidance states that “control limits should 

reflect process capability and inherent distribution of 

data”. 

o FDA Process Validation guidance often implies that 

skewed distributions require asymmetric control 

limits, such as those provided by lognormal or 

loglogistic distributions, for robust lifecycle 

management [39]. 

o The use of threshold distributions for bounded 

impurity data is supported by peer-reviewed literature 

[40]. This approach ensures that control limits respect 

physical boundaries, aligning with regulatory 

expectations such as ICH Q3C [41]. 

3.4 Why EWMA is Mandatory for CP 

The selection of the EWMA chart for Chromatographic 

Purity (CP) was mandated by a fundamental constraint that was 

not present for Water Content (WC). While a 3-parameter 

distribution provided a chemically valid and defensible model for 

WC (with a threshold of 0.10000%), the analogous approach for 

CP failed. For CP, the best-fitting 3-parameter loglogistic model 

yielded a chemically impossible threshold parameter (-

2.05782%), which invalidates its use for deriving meaningful 

control limits. This critical distinction forced the adoption of a 

distribution-agnostic method for CP, whereas a parametric 

model was viable for WC. The selection of the EWMA chart for 

CP, despite the exploration of a 3-parameter loglogistic 

distribution, was based on rigorous statistical and engineering 

evidence: 

1. Normality Test Failure: The Anderson-Darling (AD) 

test for the Normal distribution rejected normality 

(AD=0.899, P-value=0.018), confirming that CP data is 

non-normal. 

2. Box-Cox Transformation Failure: Even after applying 

an optimal Box-Cox transformation (λ=0.5), the 

transformed data remained non-normal (AD=1.248, 

P<0.005), indicating that simple transformations could 

not achieve a normal distribution suitable for Shewhart 

charts. 

3. Chemically Invalid Threshold: While the 3-parameter 

loglogistic distribution yielded a statistically acceptable 

Likelihood Ratio Test (LRT) P-value of 0.141 

(confirming the three-parameter model is not 

overcomplicated compared to a two-parameter version), 

its estimated threshold parameter was -2.05782. This 

value is chemically impossible for purity (which cannot 

be negative). Such a physically meaningless parameter 

invalidates the model for deriving chemically meaningful 

control limits or for calculating reliable process capability 

indices (Pp/Ppk), despite the statistically acceptable LRT 

P-value (0.141) [24],[39]. This fundamental violation of 

physical reality rendered the 3-parameter loglogistic 

unsuitable for CP’s control charting. Consequently, a 

distribution-agnostic EWMA chart was selected as the 

most statistically and scientifically reasonable choice for 

CP due to its robustness to non-normality and lack of 

reliance on a physically unrealistic distributional fit 

[29],[30]. 

4. No Viable Distribution for Limits: Given the failure of 

normality, transformations, and the chemical invalidity of 

other parametric fits like the 3-parameter loglogistic, a 

robust, distribution-agnostic approach was necessary. 

5. Robustness of EWMA: EWMA charts are known for 

their ability to detect small shifts in the process mean and 

are robust to mild departures from normality [29],[30]. 

This makes them ideal for monitoring CP, which exhibits 

mild skewness (0.32) but no reliable underlying 

parametric distribution that yields physically valid 

parameters. 

6. Practical Implications using software: While Minitab 

allows the selection of various distributions for capability 

analysis, using a chemically invalid threshold for process 

capability indices (e.g., Pp/Ppk) would lead to erroneous 

and unacceptable conclusions regarding the process’s 

ability to meet specifications. Therefore, for CP, the 

EWMA chart is the only scientifically and pragmatically 

defensible choice for process control in the current case. 

The out-of-control conditions identified for SOR (point 16), 

WC (point 3), and RI (points 13, 14, 15) indicate that these 

processes are not operating in a state of statistical control. This 

means that assignable causes of variation are present, leading to 

unpredictable process performance and potentially non-

conforming product [24],[42]. Further investigation is required 

to identify the root causes of these deviations and implement 

corrective actions. Conversely, the stability of CP highlights a 

well-controlled process, likely due to the robust choice of the 

EWMA chart, which effectively monitored for shifts without 

being misled by problematic distributional fits. This aligns with 

industry standards for control chart usage [43]. One of the main 

factors that is worth examination is the inconsistent source of the 

raw compound as indicated in the control charts in the x-axis by 

chronological order of labelled anonymous coded 

manufacturers. The rationale for selecting a specific control chart 

strategy for each parameter, based on its statistical characteristics 

and physical properties, is summarized in Table 5. The detailed 

justification for each choice is provided below. 
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Table 5 Summary of Rationale for Control Chart Selection by Parameter 

Parameter 
Key Data 

Characteristics 

Best-Fit Distribution 

(if valid) 

Primary Reason for Chart 

Selection 

Control Chart 

Type 

SOR 

(Specific Optical 

Rotation) 

•Can vary around 

zero (Mean: -0.1, 

Min: -2, Max: 2) 

•Mild skewness 

(0.07) and kurtosis 

(0.58) 

Normal (AD=0.549, 

p=0.143) 

Logistic (AD=0.467, 

p=0.200) 

Data is approximately normal, 

meeting the core assumption of the 

Shewhart framework. 

I-MR Chart 

WC 

(Water Content) 

•Strong right-

skewness (2.62) & 

high kurtosis (9.39) 

•Bounded below 

(Min: 0.1%; 0% is 

physically 

impossible) 

3-Parameter 

Loglogistic 

(Threshold = 0.10000) 

The distribution's threshold 

parameter (0.10000) aligns 

perfectly with the known physical 

boundary and data minimum, 

providing chemically defensible 

control limits. 

I-MR Chart with 

3-Parameter 

Loglogistic 

Distribution 

RI 

(Residue on 

Ignition) 

•Zero-inflated (Min: 

0) 

•Non-normal raw 

data 

Johnson Transformed 

(AD=0.545, p=0.146) 

A Johnson transformation 

successfully normalized the data, 

allowing for the application of a 

standard I-MR chart on the 

transformed values. 

I-MR Chart on 

Johnson-

Transformed 

Data 

CP 

(Chromatographic 

Purity) 

•Mild skewness 

(0.32) 

•Non-normal; 

rejected normality 

(AD=0.899, 

p=0.018) 

•No physical lower 

bound (can be 0%) 

None (3-Parameter 

Loglogistic was 

rejected due to a 

chemically impossible 

threshold of -2.06%) 

No physically valid or meaningful 

parametric distribution could be 

fitted. The EWMA chart is robust 

to non-normality and does not 

require a specific distributional 

assumption. 

EWMA Chart (λ 

= 0.2) 

Note: AD = Anderson-Darling test statistic. 

3.5 Limitations of the Study 

This study provides valuable insights into the statistical 

behavior and control of key operational parameters; however, it 

is subject to several limitations that warrant consideration for 

future research and practical application. Firstly, the limited 

sample size of 26 observations for each parameter inherently 

constrains the statistical power of goodness-of-fit tests and the 

precision of parameter estimates [44]. While efforts were made 

to identify the most appropriate distributions and control charts, 

small sample sizes can lead to less reliable conclusions regarding 

the true underlying distribution of the data and may result in 

wider confidence intervals for estimated parameters [45]. This 

limitation particularly impacts the robustness of complex 2- and 

3-parameter distribution fits, as evidenced by the frequent 

warnings regarding non-convergence of algorithms and non-

existent variance/covariance matrices encountered during the 

distribution identification process [36]. These warnings are 

critical indicators of potential instability in parameter estimation 

and suggest that the models may not be robustly capturing the 

true data distribution with the given data volume. 

Finally, the challenges in reliably modeling certain 

parameters probabilistically due to persistent non-normality and 

problematic parameter estimates (e.g., chemically invalid 

thresholds for CP) impose limitations on advanced statistical 

applications. The inability to robustly define the probability 

distribution for some parameters restricts the confidence in 

conducting accurate risk assessments, performing Monte Carlo 

simulations, or developing statistically robust optimization 

strategies that rely on precise probabilistic models [44]. This 

highlights a gap where more advanced non-parametric methods 

or larger datasets might be required to achieve higher confidence 

in predictive modeling. Future studies should aim for larger 

sample sizes (n > 50) to enhance the robustness of distribution 

fitting. Furthermore, alternative non-parametric SPC methods or 

Bayesian approaches could be explored to mitigate the 

challenges posed by small, non-normal datasets with physical 

constraints. 

4 Conclusion 

This study provided a comprehensive statistical 

characterization and process control assessment of four critical 

operational parameters in an applied engineering system. The 

findings underscore the importance of rigorous data analysis, 

including descriptive statistics, distribution identification, and 

tailored control charting methodologies. Control strategies were 

meticulously optimized for data characteristics: distribution-

specific limits were established for bounded parameters like 

water content by leveraging its physical boundary and 

appropriate loglogistic modeling; a Johnson transformation was 

effectively applied for zero-inflated data residue on ignition; and 

robust methods, specifically the EWMA chart, were judiciously 

chosen for unbounded non-normal data as in in the herein case 

of the chemical purity where parametric fits yielded chemically 

invalid results. This framework, despite the constraints of a 

limited sample size, illustrates a principled and justified approach 

to process monitoring aligned with the intent of ASTM E2587-

16 standards, where method selection is driven by data 

characteristics and physical realism rather than defaulting to 

normality assumptions. For practitioners, this study 

demonstrates a decision framework: 1) characterize data using 
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descriptive statistics and normality tests; 2) for parameters with 

a physical boundary (e.g., impurities), explore threshold 

distributions; 3) for bounded but highly non-normal data, 

consider transformations; and 4) when no physically valid 

parametric model fits, employ robust, distribution-agnostic 

charts like EWMA. This tailored approach ensures control limits 

are both statistically sound and chemically defensible. 
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