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ABSTRACT 

This paper presents an optimal design procedure and economic operational scheduling of micro energy grids (MEGs). The 

optimization objectives are to minimize cost, carbon dioxide emissions, and energy deficiency. The energy sources and conversion 

technologies included in this study are renewable-based sources (wind and photovoltaic), a furnace, an electrical heater, a main power 

grid, and a local power station. Two proposed control levels are applied to control the operation of the MEG. The supervisor control 

level selects the energy supplier based on price and/or availability. The inner control level dynamically matches the demand profile 

with the supply profile. The control loops guarantee dynamic matching between the demand profile and supply profile.   Two scenarios 

are simulated, zero interest rates and 5.25% interest rates. The results showed renewables contribute with a significant share as an 

energy source, however, higher interest rates would negatively impact this contribution. It also confirms that carbon taxes can reduce 

the use of fossil fuels as an energy source. 

Keywords: Micro Energy Grid, Energy Grid Operation, Optimal Structure of Energy Grid, Genetic Algorithms, Renewable 

Energy Sources 
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1 Introduction 

In 2019, global energy demand increased by 8.4%. 

However, due to renewable energy contributing to 29% of total 

demand growth, greenhouse gas emissions increased only by 

1.4% [1]. In the previous 5 years, the greenhouse gas emissions 

were kept unchanged while the energy demand had increased by 

a rate of 1.4% [2].  This is due to the significant penetration of 

renewable-based energy in energy production that reduces 

greenhouse gas emissions caused by energy production.  

A Micro Energy Grid (MEG) can integrate renewable 

energy sources (RESs) and distributed generators (DGs) in an 

energy system that satisfies the energy demand in local 

geographical areas [3]. MEG facilitates better control of energy 

production and emission, reduces power outage risk, and 

increases energy reliability [4]. They can utilize local energy 

resources with a lower dependency on centralized power plants 

based on their operational mode (islanded or grid-connected). 

Hence, power transmission loss and transmission infrastructure 

can be greatly reduced. The term Micro Energy Grid (MEG) was 

recorded in some articles to replace MG with the same definition. 

However, some articles use this term (MEG), with the addition 

of "Energy" to indicate the integration of other forms of energy 

rather than electricity, such as heat and gas [5],[6]. The 

integration of other forms of energy provides more effective and 

optimal solutions with the presence of more supply options. 

Combined heat and power (CHP) generators with heat 

generation are examples of supplying energy in other forms 

rather than electricity. Utilizing wasted energy from such 

resources increases their efficiency and reduces energy costs and 

emissions. In this paper, MEG is used to refer to the integration 

of different forms of energy. MEGs offer many benefits such as 

1) Ability to supply growing demand with minimal 

modification to energy transmission infrastructure of the 

main grid. 

2) Reduce energy loss due to energy transmission. 

3) Allow local management of energy demand by load 

shedding/scheduling. 

4) Minimize the risk of a power outage with the presence of 

different supply resources. 

5) Reduce emissions by integrating renewables as a source of 

energy. 

6) Deploy, maintain, and operate energy generators in an 

efficient manner. 

7) Supply isolated areas with required energy using available 

local energy sources.            

MEG planning and operational scheduling is a multi-objective 

optimization problem where size, structure, and interconnection 

are among different parameters affecting the optimization 

objectives (cost and reliability). While some research activities 

show interest in optimizing MEG locally [6], others focused on 

the interconnection options with other MEGs and the main utility 

network [7]-[9], reducing the operation cost by load shifting [10], 

or scheduling of energy storage systems [11],[12]. The 

mentioned work used AI algorithms in their optimization 

processes such as genetic algorithms [10]-[11] and fuzzy logic 

[12].  

Moghaddam et al. [13] introduced MG optimization with 

local optimization objectives (ignoring the transformer losses). 

They applied the modified particle swarm optimization 

technique with adaptation capabilities to reduce optimization 

dependency on learning factors and momentum weight factors in 

conventional PSO. They adopted a time of 24 hours for the 

optimization process, as the algorithm is an online power 
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dispatch process. Sizes of DGs are assumed constant, hence, no 

optimization for the sizes of DGs greatly affects the initial cost. 

Díaz et al. [14] developed an optimal energy policy for MG 

in a grid-connected mode under uncertainty. They considered 

wind turbines (WT) and gas microturbines as hybrid power 

systems, in addition to the main grid. Levelized Cost of Energy 

(LCoE) is used as an objective function for connection policy.  

The operation expenditures, gas, and electricity prices (OPEX), 

together with capital expenditures (CAPEX), are used to find the 

optimal policy for switching between gas microturbine and main 

grid to compensate for energy deficiencies between demand and 

WT generation. Their work considers the uncertainty of prices, 

not energy availability. The CAPEX for grid connectivity was 

not included. The authors developed the Ornstein-Uhlenbeck 

(OU) process, which satisfies the stochastic differential equation 

model to present the uncertainty of both price and load. Another 

work on optimal energy management under uncertainty can be 

found in [15]. Katzenbach et al. [8] developed a methodology for 

energy conservation and resource management in building 

systems. Their work focused on listing sequential procedures to 

examine the effectiveness of different energy options. Kouloura 

et al. [16] presented a methodology for decomposing energy 

problems for buildings into multi-energy systems in different 

forms (hyper, parallel, and sub-systems). The methodology 

allows us to observe the coupling of energy processes in 

buildings, based on the system analyses of student housing 

buildings in the city of Xanthi, Greece, as a case study. They 

proposed a set of interventions to improve energy consumption, 

cost, and emission. No optimization algorithm is used, and only 

human knowledge and experience are used for energy 

optimization measures and evaluation. Zidan et al. [17] presented 

optimal deployment of distributed generation (DG) based on 

capacity sizes and types. They assume a static model of energy 

generators and storage. Hence, only open-loop control was used 

in their algorithm.   

In this paper, an optimal structure and economic operation 

of MEG is performed. The MEG operation and scheduling are 

performed by applying two control levels. The upper control 

level (supervise controller) provides optimal operation of MEG, 

based on fuel prices and availability, to satisfy the load demand. 

While energy prices can be easily achievable, the availability of 

energy from each source is not. In the previous work, the 

operation and optimization algorithms assume unlimited energy 

sources, neglecting the limited structure of MEG. In addition, 

they either neglect the losses of energy generators and converters 

or consider them as static losses. Hence, their work lacks 

practicality.  

This paper provides a significant contribution by accounting 

for limited energy sources, and the dynamics of power loss of 

each component in the MEG. As the losses of different 

components of MEG are dependent on the load value, they can’t 

be presented as static values. Hence, a lower-level dynamic 

control process (PI algorithm) was adopted to satisfy dynamic 

heat and power load in the presence of dynamic losses of energy 

conversion technologies, and power limitation of those sources. 

Once the lower control level signals no availability to supply the 

required power from a selected source, the upper control level 

shifts demand to the second lower-cost power source. Moreover, 

the paper accounts for the presence of local power stations that 

can export surplus energy with prices lower than the prices of the 

main grid.   

With the implementation of two-level control loops to MEG 

under consideration, an optimal operation is guaranteed; 

however, it doesn’t guarantee its optimal structure. Therefore, 

genetic algorithms (GA) are implemented to find the optimal 

structure of the MEG under its optimal operating conditions. 

Annual capital expenditure, maintenance, operation (M&O) 

expenditure, emission, and energy deficiency are used to form 

objective functions for the optimization process. The MEG is 

designed to supply a small-sized town of 200 midsize houses, 

located near urban Toronto, Ontario Canada (Heat and power 

loads).  

The paper is organized as follows: Section 2 describes the 

MEG structure. Each energy source model is presented in the 

subsections of Section 2. The models included the economic 

model (annual capital expenses and operation expenditure), the 

generation model for renewable sources, and the losses model for 

other energy sources. Section 3 discusses the control algorithm. 

Section 4 introduces the optimization algorithm. Section 5 

presents the simulation process and discusses the results. Finally, 

the conclusion is presented in Section 6. 

2 MEG structure  

The proposed MEG structure is shown in Fig. 1. It is 

composed of renewable sources (wind turbine and PV array), a 

gas furnace, an electrical heater, and a step-down transformer. 

The structure assumes direct supply from private/local stations, 

with the same operating voltage levels of the load (no 

transformer is required). The MEG is connected to the main grid 

via a step–down transformer for importing/exporting power 

from/to the grid. Its model presentation in the simulation is 

essential for cost and power loss calculations.  

It is assumed that heat generation from the furnace is 

dependent only on furnace capacity and required heat energy. 

The gas supply to the furnace is assumed to be unlimited. The 

system is composed of two coupled control loops, one for the 

power and one for the heat. The required power is satisfied, first, 

by the renewables. If renewables don’t satisfy the required 

power, a controller requests additional power from the main grid 

or the private local station, based on price and availability. If 

renewables produce power greater than required, the heat 

controller will direct surplus power to satisfy the required heat. 

If surplus power doesn’t satisfy the required heat, the heat 

controller satisfies the missing heat either from the furnace or 

from the electrical heater, according to the price and capacity of 

the furnace and electrical heater. Any surplus energy from 

renewables, after satisfaction of power and heat requirements, 

will be exported to the main grid via the utility transformer.  

Fig. 2 shows the structure of the two-level control system 

applied to the MEG. The supervisor controller represents the 

upper control level at which it determines the required power that 

should be supplied from each source. The amount of required 

power from each source is determined based on price and 

availability. The availability is a feedback signal generated by the 

source model. This signal is dynamically changed according to 

current power generation, power losses, and the source capacity 

(green dashed line in Fig. 2). 
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Fig. 1 The proposed MEG structure 

The lower control level is a PID algorithm applied for each 

energy source. It ensures that the source produces the required 

amount of power, provided that the limits of the source, 

according to its capacity, were not reached. If the generated 

power and power loss reach the limits of source capacity, the 

model signals zero availability to the supervisor controller to 

shift demand to the next available sources.      

The following subsections describe the economic and power 

models of each energy source. 

 

Fig. 2 Two-level Control MEG 

2.1 Wind turbine model 

Wind turbines (WTs) are among the renewable technologies 

that have a high penetration rate in MEGs. The global wind 

power capacity increased from 48,000 MW in 2004 to 370,000 

MW in 2014 with a growth rate of 16% in 2014 [2]. In 2019, the 

total world generation of wind energy increased to 651 GW [1]. 

Annual wind capacity additions declined by 21% from 2021 to 

2022 due to delayed wind projects in China caused by Covid-

related restrictions. However, it is expected to rebound by 70% 

addition in 2023 [18], Due to the limited production time of PV 

systems (during daytime only), WTs provide an alternative 

renewable source that can produce power independent of the 

time of day, but rather depending on the wind power availability 

at a given time. The wind power (𝑃wind (𝑘𝑊)) at a given wind 

speed (𝑣 (m/s)) can be determined as follows:  

𝑃wind =
1
2⁄ 𝜌𝑅𝑣3 1000⁄  𝑘𝑊 (1) 

where is the air density (nearly 1.225 kg/𝑚2 𝑎𝑡 𝑠𝑒𝑎 𝑙𝑒𝑣𝑒𝑙) 
and 𝑅 is the radius of the wind rotor. The relation between wind 

power and wind turbine output power is given by: 

𝑃WT = 𝑃wind × (
16

27
) × 𝐶𝑃 (2) 

Where 16/27 is the Betz limit and 𝐶𝑃 is the Turbine capacity. 

Turbine efficiency was set to 30 % [4] hence, at a wind velocity 

of 14 m/s, the wind turbine can generate a peak power of 504 

𝑊/𝑚2.   

Besides its capital cost and size, the wind power curve is the 

main characteristic of WT that plays a major role in its selection. 

A linearized wind power curve is used in this study as shown in 

Fig. 3 [4].  

 

Fig. 3 Typical and linearized wind turbine output power with 

wind speed curve  

According to the trend shown in Fig. 3, the output power of 

wind turbine is given by [19]: 
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𝑃𝑊𝑇(𝑘) =

{
 
 

 
 

0 𝑣(𝑘) < 𝑣𝑖𝑛
𝑃𝑊𝑇𝑟
𝑣𝑟 − 𝑣𝑖𝑛

× (𝑣(𝑘) − 𝑣𝑖𝑛) 𝑣𝑖𝑛 ≤ 𝑣(𝑘) ≤ 𝑣𝑟

𝑃𝑊𝑇𝑟 𝑣𝑟 ≤ 𝑣(𝑘) ≤ 𝑣𝑜𝑓𝑓
0 𝑣(𝑘) > 𝑣𝑜𝑓𝑓

    𝑘𝑊 (3) 

Where 𝑃𝑊𝑇(𝑘) is the generated power of the WT at wind 

speed 𝑣(𝑘),  𝑣𝑖𝑛 is the cut-in wind speed, 𝑣𝑟  is the wind speed at 

which WT generate power at its rated power (𝑃𝑊𝑇𝑟), and 𝑣𝑜𝑓𝑓  is 

the wind speed at which the WT braking system is activated to 

avoid WT mechanical failure.  Further details on the dynamic 

model of the wind turbine can be found in [7].  

The annual generated energy by WT is given by:  

𝐸𝑊𝑇 = ∑ 𝑃𝑊𝑇(𝑘)

8760

𝑘=1

      𝑘𝑊ℎ (4) 

The capital cost of different-sized WT is given in Table 1. 

Table 1 Wind turbine cost base on size [1],[20]. 

Size Cost ($/kW) 

1kW turbine 10,000 

5kW turbine 5,000 

250kW turbine 3,500 -2,500 

The capital cost of WT can be calculated as follows: 

𝐶𝐶𝑎𝑊𝑇 = 𝛼𝑊𝑇 × 𝑃𝑊𝑇𝑛𝑜𝑚 (5) 

where 𝛼𝑊𝑇 is the cost of WT per kW, and 𝑃𝑊𝑇𝑛𝑜𝑚 is the 

nominal power of installed WT. 𝛼𝑊𝑇 can be calculated as 

follows: 

𝛼𝑊𝑇 =

{
 
 

 
 
𝛼𝑊𝑇1 𝑃1 ≥ 𝑃𝑊𝑇𝑛𝑜𝑚
⋮ ⋮

𝛼𝑊𝑇𝑖 𝑃𝑖 ⋜ 𝑃𝑊𝑇𝑛𝑜𝑚 ⋜ 𝑃𝑖+1
⋮ ⋮

𝛼𝑊𝑇𝑁 𝑃𝑁 ⋜ 𝑃𝑊𝑇𝑛𝑜𝑚

 (6) 

where 𝛼𝑊𝑇𝑖 represents the cost of WT per kW for WT sizes 

between 𝑃𝑖  and 𝑃𝑖+1. The annual capital expenses can be 

calculated as follows: 

𝐶𝐶𝑎𝑊𝑇_𝑎𝑛 = 𝐶𝐶𝑎𝑊𝑇/𝑇𝑊𝑇  (7) 

where 𝑇𝑊𝑇  is the WT lifetime (years). WT operation 

expenditure is calculated as follows: 

𝑂𝑝𝐸𝑥W𝑇 = FCR × (𝐶𝐶𝑎𝑊𝑇 𝑇𝑊𝑇⁄ )
+ 𝐶𝑂𝑀𝑊𝑇𝐸𝑊𝑇               $/𝑦𝑒𝑎𝑟 

(8) 

where 𝐶𝐶𝑎𝑊𝑇  is the WT initial cost ($), FCR is the fixed 

charge rate (interest, insurance, taxes, and others), 𝐶𝑂𝑀𝑊𝑇  is the 

WT operation and maintenance cost (O&M) ($/kWh) and 𝐸𝑊𝑇  

is the produced energy (kWh/year)[20],[21]. The first term of Eq. 

(7) is independent of the WT energy production (insurance, 

annual interest rate, land leasing, etc.), while the second term is 

dependent on the WT energy production (parts replacements, 

production maintenance, etc.). Eq. (7) can be rewritten as 

follows: 

𝑂𝑝𝐸𝑥W𝑇 = FCR(𝐶𝐶𝑎𝑊𝑇 𝑇𝑊𝑇⁄ )

+ 𝐶𝑂𝑀 ∑ 𝑃𝑊𝑇(𝑘)

8760

𝑘=1

      $/𝑦𝑒𝑎𝑟 

(9) 

2.2 Solar PV Model 

PV represents one of the major renewable energies that 

achieved significant growth. According to the Solar Energy 

Industry Association (AEIS) report [22], about 50% of newly 

electricity-generating capacity added to the US grid in 2022 

comes from solar stations. For the fourth year in a row, PV 

technology came at the top technology for new additions. The 

PV market grew by more than 95% in the USA. The renewables 

account for generating +315 GW in 2022, 50% comes from PV 

[23]. The rapid increase in PV installation is due to the massive 

production of PV modules from China which produced about 

61% of global production in 2016 (about 45000 MW annually). 

Such a production rate reduced the module cost from $0.65/W in 

2015 to $0.39/W in 2016 [22]. The prices were reduced in 2020 

to $0.23/W for monocrystalline modules [24]. The selection of 

PV systems is critical where capital expenditure represents from 

75% to 90% of the life cycle cost (the O&M contributes only 

10% to 25%) [25].   

The output power of the PV module (𝑃𝑃𝑉𝑚(𝑘)), at any 

sample time 𝑘, is dependent on ambient irradiance 

(𝑃𝑖𝑟𝑟(𝑘) (kW/m
2)), panel temperature (𝑇), PV area (𝑎𝑚𝑜𝑑𝑢𝑙𝑒) 

and PV module efficiency (µ𝑃𝑉) as follows:  

𝑃𝑃𝑉𝑚(𝑘)

= {
𝑃𝑖𝑟𝑟(𝑘) × 𝑎𝑚𝑜𝑑𝑢𝑙𝑒 × µ𝑃𝑉 × 𝐷 × µ𝑡 𝑃𝑖𝑟𝑟(𝑘) × µ𝑃𝑉 × 𝑎𝑚𝑜𝑑𝑢𝑙𝑒 < 𝑃𝑃𝑉𝑛𝑜𝑚

𝑃𝑃𝑉𝑛𝑜𝑚 × µ𝑡 × 𝐷 𝑃𝑖𝑟𝑟(𝑘) × µ𝑃𝑉 × 𝑎𝑚𝑜𝑑𝑢𝑙𝑒 ≥ 𝑃𝑃𝑉𝑛𝑜𝑚
 

(10) 

where 𝑃𝑃𝑉𝑛𝑜𝑚 is the nominal power of the PV module under 

standard test conditions, 𝐷 is the annual degradation rate of solar 

panels, and  µ𝑡 is the temperature efficiency factor which can be 

calculated using the following equation: 

µ𝑡 = 1 − [𝛶 × (𝑇 − 𝑇𝑆𝑇𝐶)] (11) 

where TSTC is the Standard Test Conditions temperature, 

and 𝛶 is the power temperature coefficient (typically 0.005 

for crystalline silicon) [9],[26]. 

The module efficiency (µ𝑃𝑉) can be calculated using the 

following formula: 

µ𝑃𝑉  =
𝑃𝑃𝑉𝑛𝑜𝑚
𝑃𝑖𝑟𝑟𝑆𝑇𝐶

 (12) 

where 𝑃𝑖𝑟𝑟𝑆𝑇𝐶  is the irradiance under standard test 

conditions (1000 W/m2). 

Hence the total generated power of an 𝑁𝑃𝑉 installed PV 
module is given by: 

𝑃𝑃𝑉(𝑘) = 𝑃𝑃𝑉𝑚(𝑘) × 𝑁𝑃𝑉 (13) 

The annual generated energy using PV is given by: 

𝐸𝑃𝑉 = ∑ 𝑃𝑃𝑉(𝑘)

8760

𝑘=1

      𝑘𝑊ℎ (14) 

PV systems are composed of PV modules, inverters, wiring, 

and other hardware components. The rate of change of prices of 

PV system components differs. While the price of PV panels 

changes dramatically, the prices of inverters and other hardware 

do not. In addition to the components of a PV system, the 

installation cost is another major parameter in the determination 

of the capital cost of a PV system. The capital cost of the PV 

system can be calculated as follows: 

𝐶𝐶𝑎𝑃𝑉 = (𝐶𝑚𝑜𝑑 + 𝐶𝑖𝑛𝑣 + 𝐶𝐵𝑂𝑆 + 𝐶𝑖𝑛𝑠) × 𝑃𝑃𝑉𝑛𝑜𝑚 (15) 
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where 𝐶𝑚𝑜𝑑 is the module cost, 𝐶𝑖𝑛𝑣 is the inverter cost, 

𝐶𝐵𝑂𝑆 is wiring and other hardware costs (Balance of System) and 

𝐶𝑖𝑛𝑠 are the installation expenses per kW rating power of the 

generator. The annual capital expenses can be calculated as 

follows: 

𝐶𝐶𝑎𝑃𝑉_𝑎𝑛 = 𝐶𝐶𝑎𝑃𝑉/𝑇𝑃𝑉 (16) 

where 𝑇𝑃𝑉 is the PV lifetime. 

The O&M (operational and maintenance) expenditure 

𝑂𝑝𝐸𝑥PV = FCR × (𝐶𝐶𝑎𝑃𝑉 𝑇𝑃𝑉⁄ ) + 𝐶𝑂𝑀𝑃𝑉𝐸𝑃𝑉             $/𝑦𝑒𝑎𝑟 (17) 

Where 𝐶𝐶𝑎𝑃𝑉  is PV initial cost ($),  𝐶𝑂𝑀𝑃𝑉  is the PV 

operation and maintenance cost (O&M) ($/kWh), and 𝐸PV is the 

produced energy (kWh/year). Eq. (17) can be rewritten as 

follows: 

𝑂𝑝𝐸𝑥PV = FCR × (𝐶𝐶𝑎𝑃𝑉 𝑇𝑃𝑉⁄ ) + 𝐶𝑂𝑀𝑃𝑉 ∑ 𝑃𝑃𝑉(𝑘)

8760

𝑘=1

    $/𝑦𝑒𝑎𝑟 
(18) 

Table 2 shows the PV data used for the simulation. 

Table 2 PV data [24], [27]. 

Item Value 

PV efficiency 16% 

Degradation 0.4% 

PV lifetime 20 years 

Module price 0.35 $/W 

Inverter price 13 $/Wac 

Inverter lifetime 10 years 

BOS (Structural and Electrical) 0.4 $/W 

2.3 Furnace Model 

As a result of low gas prices compared to any other source 

of energy, furnaces are the first option to produce heat energy. 

However, the cost of each ton of emission produced by fossil fuel 

and restrictions by international protocols and agreements 

concerning the environment may flip the equation in favor of 

environmentally friendly energy sources. Despite the effort to 

reduce fossil fuel consumption, they represent a competitive 

energy source for heat and transportation applications due to low 

prices and high energy density. In the case study of this paper, in 

addition to the electrical heater, the furnace is used to satisfy the 

MEG heat demand.   

The capital cost of the furnace (𝐶𝐶𝑎𝐹𝑢𝑟) is given by: 

𝐶𝐶𝑎𝐹𝑢𝑟 = 𝛼𝐹𝑢𝑟 × 𝑃𝐹𝑢𝑟𝑛𝑜𝑚 (19) 

where 𝛼𝐹𝑢𝑟  is the cost of the furnace per 1kBUT/hr and 

𝑃𝐹𝑢𝑟𝑛𝑜𝑚 is the nominal power of the installed furnace. 𝛼𝐹𝑢𝑟  can 

be calculated as follows: 

𝛼𝐹𝑢𝑟 =

{
 
 

 
 
𝛼𝐹𝑢𝑟1 𝑃1 ≥ 𝑃𝐹𝑢𝑟𝑛𝑜𝑚
⋮ ⋮

𝛼𝐹𝑢𝑟𝑖 𝑃𝑖 ⋜ 𝑃𝐹𝑢𝑟𝑛𝑜𝑚 ⋜ 𝑃𝑖+1
⋮ ⋮

𝛼𝐹𝑢𝑟𝑁 𝑃𝑁 ⋜ 𝑃𝐹𝑢𝑟𝑛𝑜𝑚

 (20) 

where 𝛼𝐹𝑢𝑟𝑖 represents furnace initial and installation costs 

per 1kBUT/hr of furnace size between 𝑃𝑖  and 𝑃𝑖+1. The annual 

capital expenses can be calculated as follows: 

𝐶𝐶𝑎𝐹𝑢𝑟_𝑎𝑛 = 𝐶𝐶𝑎𝐹𝑢𝑟/𝑇𝐹𝑢𝑟  (21) 

where 𝑇𝐹𝑢𝑟  is the Furnace lifetime (years).  

Furnace operation expenditure is calculated as follows: 

𝑂𝑝𝐸𝑥Fur = FCR × (𝐶𝐶𝑎𝐹𝑢𝑟 𝑇𝑊𝑇⁄ ) + 𝐶𝑓𝑢𝑒𝑙 

× 𝐶𝑃 × ∑ 𝑃𝐹𝑢𝑟(𝑘)

8760

𝑘=1

 ×
100

𝜇𝐹𝑢𝑟
+ 𝐶𝑀𝐹𝑢𝑟  

× ∑ 𝑃𝐹𝑢𝑟(𝑘)

8760

𝑘=1

              $/𝑦𝑒𝑎𝑟 

(22) 

where 𝐶𝑀𝐹𝑢𝑟  is the furnace maintenance cost ($/kWh), 𝐶𝑃 is 

the Specific energy (MJ/kg), 𝐶𝑓𝑢𝑒𝑙 is the fuel price ($/kg) and 

𝜇
𝐹𝑢𝑟

 is the furnace efficiency. The CO2 emission (kg/ year) 

is calculated by: 

𝑚𝑐𝑜2 = 𝐸𝐹𝑐𝑜2 × ∑ 𝑃𝐹𝑢𝑟(𝑘)

8760

𝑘=1

 ×
100

𝜇𝐹𝑢𝑟
 (23) 

where 𝐸𝐹𝑐𝑜2 is the CO2 emission factor.  

The furnace requires electrical power 𝑃𝑒𝑙𝑒𝐹𝑢𝑟(𝑘) for 

its operation is given by: 

𝑃𝑒𝑙𝑒𝐹𝑢𝑟(𝑘) = 𝛽𝑒𝑙𝑒𝐹𝑢𝑟 × 𝑃𝐹𝑢𝑟(𝑘) (24) 

where 𝑃𝐹𝑢𝑟(𝑘) is the current heat rate of the furnace, 𝛽𝑒𝑙𝑒𝐹𝑢𝑟  

is the electrical coefficient of the furnace dependent on furnace 

type as given in Table 3 [28].   

Table 3 Electrical coefficient for different furnace types  

Furnace type 𝜷𝒆𝒍𝒆𝑭𝒖𝒓 

Non-Condensing Furnace 0.000006 kW/Btu/h 

Condensing furnace with PSC motor 0.000009 kW/Btu/h 

Condensing furnace with BPM motor 0.000005 kW/Btu/h 

2.4 Electrical Heater and Transformer Model 

A simplified Electrical heater model is used for the 

simulation. The efficiency of the electrical heater is set to 100% 

and the capital cost is given by the following equation: 

𝐶𝐶𝑎𝑒𝑙𝑒𝐹 = 𝛼𝑒𝑙𝑒𝐹 × 𝑃𝑒𝑙𝑒𝐹𝑛𝑜𝑚 (25) 

where 𝛼𝑒𝑙𝑒𝐹  is the average capital cost per 1 kBtu/h (set to 

$35) including the unit price and installation cost. The annual 

capital expenses can be calculated as follows: 

𝐶𝐶𝑎𝑒𝑙𝑒𝐹_𝑎𝑛 = 𝐶𝐶𝑎𝑒𝑙𝑒𝐹/𝑇𝑒𝑙𝑒𝐹  (26) 

where 𝑇𝑒𝑙𝑒𝐹 is the electric furnace lifetime (years).  

The transformer capital cost (𝐶𝐶𝑎𝑇𝑟𝑎𝑛𝑠) is given by: 

𝐶𝐶𝑎𝑇 = 𝛼𝑇 × 𝑃𝑇𝑛𝑜𝑚 (27) 

where 𝛼𝑇𝑟𝑎𝑛𝑠 is the cost of the transformer per 1kWh and 

𝑃𝑇𝑟𝑎𝑛𝑠𝑛𝑜𝑚 is the nominal power of installed Transformer. 𝛼𝑇𝑟𝑎𝑛𝑠 
can be calculated as follows: 

𝛼𝑇 =

{
 
 

 
 
𝛼𝑇1 𝑃1 ≥ 𝑃𝑇𝑛𝑜𝑚
⋮ ⋮
𝛼𝑇𝑖 𝑃𝑖 ⋜ 𝑃𝑇𝑛𝑜𝑚 ⋜ 𝑃𝑖+1
⋮ ⋮
𝛼𝑇𝑁 𝑃𝑁 ⋜ 𝑃𝑇𝑛𝑜𝑚

 (28) 

where 𝛼𝑇𝑖 represents the initial and installation costs of the 

furnace per 1 kWh of transformer size between 𝑃𝑖  and 𝑃𝑖+1. The 

annual capital expenses can be calculated as follows: 

𝐶𝐶𝑎𝑇_𝑎𝑛 = 𝐶𝐶𝑎𝑇/𝑇𝑇 (29) 



A. S. Eldessouky and A. Fahmy /JEA Vol. 04(03) 2023, pp 90-100 

95 

 

where 𝑇𝑇  is the transformer lifetime (years). The transformer 

losses are given by: 

𝑃𝑇𝑙𝑜𝑠𝑠(𝑘) = 𝜇𝑇𝑃𝐿(𝑘) (30) 

where 𝜇𝑇 is the transformer efficiency and 𝑃𝐿(𝑘) is the load 

power at instance k.   

3 Control Algorithm 

The control flowchart is shown in Fig. 4. The heat and power 

control algorithms are identical. The algorithms start by sorting 

the energy sources based on their operational costs (namely the 

fuel prices, hence, renewable sources costs are negligible during 

the sorting process). Then, the algorithms request a supply for 

the current demand (heat or power) from a source with a lower 

operational cost.  

 

Fig. 4 Control flowchart 

The control loop increments the control action dynamically 

to match the required demand and simultaneously calculate the 

available power based on both generated power and source 

capacity according to the following equations: 

𝑃𝐸𝑒(𝑘) = 𝑃𝐸𝑟𝑒𝑞(𝑘) − 𝑃𝐸𝑖(𝑘) (31) 

𝑃𝐸𝑖(𝑘 + 1)

= {

𝑃𝐺𝑖𝑚𝑎𝑥 𝑃𝐸𝑖(𝑘 + 1) ≥ 𝑃𝐺𝑖𝑚𝑎𝑥
𝑃𝐸𝑖(𝑘) + 𝐾𝑐 × 𝑃𝐸𝑒(𝑘) 0 ≤ 𝑃𝐸𝑖(𝑘 + 1) ≤ 𝑃𝐺𝑖𝑚𝑎𝑥

0 𝑃𝐸𝑖(𝑘 + 1) ≤ 0

 
(32) 

where 𝑃𝐸𝑟𝑒𝑞(𝑘) is the required electrical power at instant 𝑘, 

𝑃𝐸𝑒(𝑘) is the error between currently required power and the 

delivered power to the load 𝑃𝐸𝑖(𝑘), and 𝑃𝐺𝑖𝑚𝑎𝑥  is the capacity of 

the generator 𝑖. For renewable sources, the equation will be 

slightly modified to the following: 

𝑃𝐸𝑖(𝑘 + 1)

= {

𝑃𝑅𝑒𝑛(𝑘) 𝑃𝐸𝑖(𝑘 + 1) ≥ 𝑃𝑅𝑒𝑛(𝑘)

𝑃𝐸𝑖(𝑘) + 𝐾𝑐 × 𝑃𝐸𝑒(𝑘) 0 ≤ 𝑃𝐸𝑖(𝑘 + 1) ≤ 𝑃𝑅𝑒𝑛(𝑘)

0 𝑃𝐸𝑖(𝑘 + 1) ≤ 0

 
(33) 

where 𝑃𝑅𝑒𝑛(𝑘) is the generated power from renewables at 

instant 𝑘. If the generated power reaches the capacity limit of the 

source, the algorithms shift to the next energy source with the 

next lower operational cost. The process repeats till the load is 

satisfied or the generated power reaches the full capacity of all 

generators. The total power deficiency (𝑃𝑑𝑒𝑓) represents the 

unfulfilled demand from all given sources.   

4 MEG Optimization using Genetic Algorithms 

Unlike conventional optimization techniques, GA is a 

search algorithm that can guarantee a global minimum. Each 

parameter of the optimization problem is coded in what is called 

a “Gene”. The collection of genes (optimization parameters) 

forms a chromosome. Individuals in GA are presented by the 

different settings of the value of the gene and hence the 

chromosome. Accordingly, everyone is a potential solution. A 

population of a random set of individuals forms the first 

generation. The fitness function is a tool to measure how efficient 

everyone is to be a candidate solution to the problem. According 

to their fitness, individuals are selected for crossover. Parents and 

offspring, resulting from the crossover, are used to form the next 

generation. The process repeats till a significant level of fitness 

is achieved or the number of generations reaches a predefined 

value. To avoid getting stuck in the local minimum, a mutation 

is added to the process. The mutation is the process by which a 

very low percentage of the genes are exposed to random change. 

The mutation process forces the search algorithm to skip from 

the current solution pool to the unexplored area in the search 

domain. The percentage of crossover and mutation affect the 

speed of the search process. 

The optimization process is performed through two phases. 

In the first phase, the optimal structure of the supply system is 

achieved by considering annual capital expenditure, 

maintenance, and operation (M&O) expenditure, and energy 

deficiency to form the cost function. The parameters of MEG that 

are subjected to the optimization process are the sizes of each 

generator in addition to the required inverters and transformers 

to connect to loads, grid, and local power station.  Hence, the 

chromosome of everyone is given by: 

𝑥 = [𝑃𝑊𝑇𝑛𝑜𝑚 𝑃𝑃𝑉𝑛𝑜𝑚 𝑃𝑇𝑅𝑛𝑜𝑚 𝑃𝐹𝑢𝑟𝑛𝑜𝑚 𝑃𝑒𝑙𝑒𝐹𝑢𝑟𝑛𝑜𝑚 ] (34) 

The fitness function is reciprocal to the cost function as 

follows: 

𝑓 =
1

1 + 𝐶𝐼
 (35) 

where 𝐶𝐼 is the cost function and is given by: 

𝐶𝐼 = 
1
𝐶𝑃𝑃𝑘𝑊ℎ +  2𝐶 𝐸𝑑𝑒𝑓  (36) 

where 
1
and 

2
 are coefficients representing the 

significance of each term to the optimization process, 𝐶𝑃𝑃𝑘𝑊ℎ is 

the average price per kWh of electrical or heat energy and is 

given by: 
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𝐶𝑃𝑃𝑘𝑊ℎ =
𝐶𝑡

𝐸𝐷𝑒𝑚 − 𝐸𝑑𝑒𝑓
 (37) 

𝐸𝐷𝑒𝑚 = ∑ 𝑃𝑒(𝑘)

8760

𝑘=1

+ ∑ 𝑃ℎ(𝑘)

8760

𝑘=1

 (38) 

𝐶𝑡 =∑(𝐶𝐶𝑎𝑎𝑛𝑖 +𝑂𝑝𝐸𝑥i)

N

i=1

+
𝑚𝑐𝑜2

1000
× 𝐶𝐶𝑂2

− 𝐶𝑠𝑒𝑙𝑙 ∑ 𝑃𝑠𝑒𝑙𝑙(𝑘)

8760

𝑘=1

 

 

where 𝐸𝐷𝑒𝑚 is the yearly energy demand, 𝑃𝑠𝑒𝑙𝑙(𝑘) is the 

sold power at instant k and 𝐶𝑠𝑒𝑙𝑙  is the selling price in $ US per 

kWh, 𝑚𝑐𝑜2 is the emitted CO2 kg/year, and 𝐶𝐶𝑂2 is the cost of 

CO2 and set to $37 per ton [29].  

𝐶 𝐸𝑑𝑒𝑓 represents the normalized energy deficiency of 

electrical and heat energy demand in one year and given by: 

𝐶 𝐸𝑑𝑒𝑓 =
𝐸𝑑𝑒𝑓

𝐸𝐷𝑒𝑚
 (39) 

𝐸𝑑𝑒𝑓

= {𝐸𝐷𝑒𝑚 + ∑ (∑𝑃𝐿𝑜𝑠𝑠(𝑖, 𝑘)

M

i=1

−∑𝑃𝑔(𝑖, 𝑘)

N

i=1

)

8760

𝑘=1

 𝑖𝑓 > 0       

𝑧𝑒𝑟𝑜 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 
(40) 

where 𝑃𝑔(𝑖, 𝑘) is the generated power from generator 𝑖, 

𝑃𝐿𝑜𝑠𝑠(𝑖, 𝑘) is the power loss of energy element 𝑖  in MG at 

instance 𝑘, 𝐸𝐷𝑒𝑚 is the electrical and heat energy demand in one 

year and 𝑃𝑒(𝑘), and 𝑃ℎ(𝑘) is the power and heat demand at 

instance k respectively.  

5 Simulation and Results  

One-year profiles of heat and power loads for midsize 

houses [30] are used for the simulation. Those profiles were 

scaled to fit 200 midsize houses located near the urban Toronto 

area. The irradiance, temperature, and wind speed profiles at the 

same location are applied [31].  

The GA optimization was performed over eight generations 

each generation is 60 individuals. Each individual represents a 

potential solution of the size of all generators and energy 

conversion technologies used in this simulation. The crossover 

probability was set to 80% while the mutation was set to 5%. The 

optimization was conducted for two scenarios, the interest rate in 

the first scenario was set to zero% while it was set to 5.25% for 

the second scenario. 

5.1 Scenario I 

In this scenario, the interest rate was set to zero. Fig. 5 shows 

the optimization results of the first scenario. As can be noted 

from Fig. 5(a) the maximum fitness was converged to a solution 

and was close to 7. Fig. 5(b) shows the progress of KPIs (key 

performance indices) of the best individual (the terms of the cost 

function of the optimization) vs. the generations. It confirms the 

stability optimization process, and that the optimization was 

almost settled after the sixth generation. Table 4 shows the 

detailed progress of the optimization by the generations. The first 

four columns represent the parameters that are subjected to 

optimization (the sizes of the energy generators), the next four 

columns represent the terms of the cost function, and the last 

column represent the fitness value of this individual. The table 

shows how the optimization algorithm reduces the use of gas 

over generations due to high emission costs. The price of energy 

is about 11.4 ₵/kWh in addition to the emission price that should 

be added (0.1 ₵/kWh), the power deficiency is about 2% and the 

excessive power is close to zero. The results of the best 

individual over a generation are listed in Table 4.  

Table 4 Results of optimization over generations (first scenario 

interest rate = 0.0%) 
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1 6032 3692 5 21564 0.194 0.097 0.020 0.009 3.120 

2 572 3691 5 21564 0.110 0.086 0.020 0.000 4.625 

3 270 3217 6 1105 0.099 0.044 0.020 0.000 6.145 

4 1900 3216 6 6 0.140 0.000 0.021 0.000 6.211 

5 270 3832 4 970 0.105 0.038 0.021 0.000 6.096 

6 270 3831 7 35 0.122 0.001 0.021 0.000 6.943 

7 170 3216 6 27 0.116 0.001 0.021 0.000 7.262 

8 100 3216 6 26 0.114 0.001 0.021 0.000 7.345 

 

  

(a)  

 

(b) 

Fig. 5 Optimization results for 1st scenario (a) Fitness VS 

generations (b) KPIs of best individual vs. generation 

Fig. 6 shows the energy consumption from different sources 

vs. time for the optimized structure of the MEG. It also indicates 

exported and sold energy from renewables to the grid.  
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Fig. 7 shows the load contribution percentage from different 

energy sources of optimized MEG for (a) total load (heat and 

power), (b) heat load, and (c) power load. It shows that around 

61% of the supply is satisfied using reliable sources (grid). It also 

shows that renewables contribution with significant share in total 

energy required for heat and power loads (20%). Most of the 

renewable energy go to power load. The renewable sources 

contribution for heat and power loads is 7% in addition to 14% 

exported energy to the grid (the percentage of exported energy is 

calculated based on the total required energy not the generated 

one).    

 

Fig. 6 Energy consumption from different sources vs. time (1st scenario)  

   

(a)                                                      (b)                                                             (c) 

Fig. 7 Contribution percentage of different energy sources (1st scenario) to (a) total load (heat and power), (b) heat load, and (c) 

power load. Scenario I (Interest rate is set to zero) 

Fig. 8 shows the prices of energy from each source 

(considering the initial and running cost), the total average cost, 

and the carbon dioxide cost.  

 

Fig. 8 Energy prices for 1st scenario (interest rate is set to zero) 

PV recorded the minimum kWh cost; however, the 

optimization process didn’t favor PV over the conventional 

energy sources (grid).This is because of the mismatch between 

the PV energy generation profile and the load profile in addition 

to a large gap between selling and buying prices from and to the 

grid (sell price set to 2.5 cents while grid energy price ranges 

from 8-12 cents). Hence, any increase in PV size would have a 

negligible effect on the prices of consumed energy per kWh. The 

figure also indicates that the prices of energy generated by wind 

turbines are very high. This is due to its high initial cost. 

However, the wind energy profile has less mismatch with the 

load profile than PV. Accordingly, wind turbines were among 

the energy technologies of optimized MEG. It should be noted 

that the emission cost per kWh is referred to the total generated 

energy from all sources. Hence, with low share of the furnace in 

the system, this figure is very small.    

5.2 Scenario II 

An additional scenario was performed to address the impact 

of the high initial cost of energy technology on the structure of 

the optimal MEG by setting high-interest rates (5.25%). It also 

addresses the effect of high-interest rates on the progress of 

renewables in any power system. Fig. 9 shows the optimization 

results of the second scenario as discussed in the first scenario. 

The results of the best individual over a generation are listed in 

Table 5. The table shows how the optimization algorithm reduces 

the use of renewables over generations due to the high interest 

rates. The lag of renewables was compensated by the grid and 

the gas. However, the fitness of the fifth generation is very close 

to the eighth generation with higher share of renewables (note 

that the total cost of kWh is the addition of the kWh price plus 

the emission cost).  

Ren

20%

Gas

1%

Station

2%Grid

61%

Sell

14%

Def

2%

Excess

0%

Contribution (heat & power)

Ren

7%
Gas

2%

Station

0%

Grid

89%

Def

2%

Contribution (heat)

Ren

34%

Station

3%

Grid

61%

Def

2%

Contribution (power)

0.229

0.031 0.035

0.065

0.097
0.086

0.001
0.00

0.05

0.10

0.15

0.20

0.25

1

P
ri

ce
 $

/k
W

h

Wind  PV  Gas  Station  Grid AV Pric CO2



A. S. Eldessouky and A. Fahmy /JEA Vol. 04(03) 2023, pp 90-100 

98 

 

Table 5 Results of optimization over generations (second 

scenario, interest rate = 5.25%) 
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1 6032 3692 5 21564 0.245 0.040 0.020 0.009 3.181 

2 572 3691 5 21564 0.129 0.062 0.020 0.000 4.742 

3 270 3217 6 1105 0.111 0.036 0.020 0.000 5.963 

4 550 3699 3 1105 0.124 0.035 0.029 0.001 5.302 

5 270 3866 6 334 0.130 0.010 0.020 0.000 6.201 

6 572 3516 9 829 0.128 0.026 0.020 0.000 5.729 

7 297 3806 4 6 0.137 0.000 0.032 0.000 5.883 

8 407 25 8 829 0.093 0.029 0.020 0.000 7.002 

Fig. 9(b) shows that the KPIs are kept nearly the same. The 

energy consumption from renewable sources was reduced 

compared with scenario I as can be noted in Fig. 10. Fig. 11 

presents a full image of the impact of high-interest rates on MEG 

structure. It shows that the renewables contribution shrinks to 

2%. The gas and grid contribution increased significantly (93%). 

Fig. 12 presents the prices of energy kWh generated by each 

technology. The PV kWh prices went higher than first scenario. 

The contribution of the privet station in both scenarios is the 

same. This is due to the limited power offered by the station. 

However, it also indicates the importance of additional sources 

that can reduce the mismatch between generation and demand 

profiles.  

  

(a) 

 

(b) 

Fig. 9 Optimization results for 2nd scenario (a) Fitness VS 

generations (b) KPIs of best individual vs. generation 

 

Fig. 10 Energy consumption from different sources vs. time (2nd scenario) 

   

(a)                                                      (b)                                                             (c) 

Fig. 11 Contribution percentage of different energy sources (2nd scenario) to (a) total load (heat and power), (b) heat load, and (c) 

power load. Scenario II (Interest rate is set to 5.25%) 
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Fig. 12 Energy prices for 2nd scenario (interest rate is set at 

5.25%) 

Fig. 13 shows the system response for the heat power by 

applying the two control loops with algorithms presented in 

section 4. It shows how the control loops ensures close matching 

between the demand and supply. The control algorithms are 

applied during the optimization process which insures optimal 

structure and operation.  

  

(a) 

 

(b) 

Fig. 13 The control system response (a) for heat control loop 

and (b) for power control loop 

Table 6 represents the size of each energy technology 

resulting from the optimization process for the different 

scenarios.  

Table 6 Result of optimization for different scenarios  

Scenario I II 

Total WT size (kW) 100 407 

Total size PV (kW) 3215.5 24.75 

Furnace (kBtut/h) 88 2830 

Grid Transformer size (kW) 5000 4000 

6 Conclusions 

In this paper, an optimization process to the structure of 

MEG in grid-connected mode is performed. The optimization 

objective focused on minimizing cost, carbon dioxide emission, 

and energy deficiency. The optimized structure was subjected to 

a scheduling algorithm that guarantee low-price operation 

considering the availability. In addition, closed-loop feedback 

operation using a PI controller is implemented at a low control 

level for both heat and power loops. The control loops guarantee 

dynamic matching between the demand profile and the supply 

profile.  The results of the optimization and operation of the 

MEG are presented in two scenarios. The first scenario considers 

0% interest rates while the second scenario presents 5.25% 

interest rates. The results show that due to the high initial prices 

of renewables (especially WT), their contribution is reduced due 

to the high-interest rates. In addition, the mismatch between the 

renewables production profile and load profile, as well as, the 

low exporting tariff, have a negative impact on renewables’ share 

in the power system. This is evident when we compare the low 

LCOE for PV with other sources used in this work. Moreover, 

the addition of a carbon tax effectively reduces the share of gas 

as a source of energy.   
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