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ABSTRACT   

A quest for physics-based understanding of engineered metamaterials inspired numerous researchers to extract intricate features 

such as guiding and filtering elastic waves, wave focusing, topological insulation, cloaking etc. A traditional metamaterial is composed 

of a heavy core along with some other materials of dissimilar mechanical properties (e.g. stiffness, density).  It is well-established that 

the frequency band gap can be formed by introducing the desired inconsistency of material properties between stiffer resonators and 

adjacent embedding matrices. Frequency band gaps are fundamental requirements of many engineering applications such as vibration 

control, noise mitigation, and energy concentrations. Hence, advanced researches are being carried out continuously to understand the 

control parameters (e.g. bandwidth, starting and ending frequencies) of the frequency band gap. In this article, a mass-in-mass 

metamaterial using elliptical anisotropic resonators are considered to investigate the influence of resonators’ geometric factors and 

volume fraction on band gap parameters. While the elliptical resonator is splitted diagonally in one or both opposite ends to analyze 

the influence of volume fraction of the resonators on stop bands, a second set of half-circular resonators are also investigated to analyze 

the impact of resonator parameters on frequency bands. 
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1. Introduction   

From the last couple of decades, electromagnetic 

metamaterials [1],[2] are in concentration to phononic 

researchers to explore photonic band gaps, a range of frequency 

where electromagnetic waves cannot propagate [3]. The concept 

of electrodynamics metamaterial can be used in designing 

elastrodynamic metamaterials since the physical understanding 

of electromagnetic wave propagation in photonic crystals is quite 

similar to the stress (elastic) wave propagation in phononic 

crystals [4],[5]. Mass-in-mass systems are frequently proposed 

under elastodynamic problems to predicatively manipulate the 

frequency band gaps in metamaterials with engineered volume 

inclusions [6],[7]. Creating local resonance vibration modes is 

one of the important features of such acoustic metamaterials. 

Applications of such acoustic metamaterials have been 

envisioned for waveguiding, vibration control, sound isolation, 

sensing, energy harvesting etc. [8]-[12].  

Band gap and band structure manipulation are increasingly 

important in acoustic metamaterials to branch out its 

applicability. It is well-established that in any metamaterial 

frequency band gap are results from either local resonance or 

Bragg scattering. Low-frequency sound can be controlled by 

introducing locally resonant components into phononic crystals 

[13]-[17], whereas conventionally high-frequency stop bands 

can be formed by multiple scattering (Bragg) of the periodic 

inclusion [18],[19]. In recent years, researchers are attempting to 

manipulate the ability of the metamaterial by artificially 

designing the system. It has been proven that the number of stop 

bands can be increased by adding additional local resonators in 

the system [20],[21]. Most recently a multi-scale mass-in-mass 

model (MMM) with split-ring resonators [22] is proposed not 

only to obtain a wider frequency band but also to obtain multiple 

band gaps in both sonic and ultrasonic frequency regions. The 

concept of using split rings in a metamaterial system has 

primarily emerged in photonics research. Movchan et al. [23] 

used split-ring resonators to control electromagnetic bands in 

two-dimensional photonic structures. Many other researchers in 

photonic domain found split ring useful in manipulating 

electromagnetic waves for specific purposes.  

Inspired from these researches, a symmetric split-ring 

metamaterial system with multiple resonators is considered 

herein as the model offers a high level of anisotropy. Note that, 

anisotropy in a unit cell is one of the key factors of dispersive 

behavior and band gap formation in a mass-in-mass metamaterial 

system.  Although the size effect of the resonators on the 

respective band gaps was reported earlier [24], the geometric 

(shape)/volumetric dependency of the resonators on frequency 

bands is still to explore.  Hence, the primary objective of this 

study is to investigate the possibility to systematically 

manipulate the frequency band gap by the alteration of the 

resonator’s geometry or volume fraction. In addition, two 

different sets of resonators in a unit cell are also investigated to 

understand the influence of resonator setting on the frequency 

band gap. 

2. Model and Computational Approach  

2.1 Model Configurations 

Several two-dimensional structures with multiple resonator 

systems (Ref. Fig. 1) are designed to understand the 

geometric/volumetric dependency of the local resonators on 

frequency bands. Initially, the unit cell is composed of a heavy 

core (R1) of diameter 0.1414 inches embedded in a circular ring 
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(R2) with an outside diameter of 0.2828 inches. A softer material 

(M1), say, Rubber, is used to seal the space between the heavy 

core and the circular ring. A similar mass-in-mass system was 

also proposed by Huang et al. [21]. However, an elliptical ring 

(R3) is placed at the center of the unit cell to further enhance the 

anisotropic property of the system (Fig.  1 (a)). The elliptical ring 

is rotated at 450 about the center of the unit cell to allow identical 

wave pathway along both x- and y-directions. A much stiffer 

epoxy material M2 compared to M1 is considered to fill in the 

elliptical free space. In order to allow continuous mismatch in 

material stiffness between components in the system, a polymer 

material (M3) is considered to complete the outer boundary of 

the unit cell. The outside dimension of the unit cell is measured 

as one (1) square inch.

 

 

Fig.  1 Projected models to analyze the geometric influence of local resonators on frequency bands. Models (1a-1c) with 

resonators R1-R3 are considered as set-1 and rest (1d-1f) as set-2 with R1-R4 resonators. 

While designing, the elliptical resonator is splitted about 

0.115 inches along its major axis in both one (Fig. 1(b)) and two 

(Fig. 1(c)) directions, respectively. Such splitting of the 

resonators not only decreases the volume fraction of the 

resonators in the unit cell but it also allows additional degrees of 

freedom in the system, which tends to alter the frequency bands. 

The splitting of the resonators was made at the ends of the major 

axis of the elliptical geometry to ensure similar wave propagation 

path along x- and y- directions. In order to analyze the geometric 

influence of the resonators more rigorously, especially the effect 

of resonator setting, a pair of half-circular rings (R4) are added 

symmetrically (Figs. 1(d)-1(e)) in all three models described 

previously (Figs.  1(a)-1(c)). Unit cells with resonators R1-R3 

are considered as resonator set-1 (Models 1a-1c); whereas set-2 

is referred to as models with resonators R1-R4 (Models 1d-1f). 

In this study, the thickness of all the rings is considered as 0.037 

inches. Material properties and dimensions of the unit cell 

components are listed in Table 1.

Table 1 Properties of the components of the unit cell. 

Component 

Name 

Outer Dimensions 

(inch) 

Stiffness 

(Pa) 

Density 

(kg/m3) 

Poisson’s 

Ratio 

M1 Diameter – 0.2121 10e6 980 0.49 

M2 
Major Radius – 0.4 

Minor Radius – 0.2 
2.5e9 1250 0.38 

M3 1 X 1 Square 0.5e9 1050 0.49 

R1 Diameter – 0.1414 13e9 11310 0.435 

R2, R4 Diameter – 0.2828 100e9 2950 0.31 

R3 
Major Radius – 0.435 

Minor Radius – 0.235 
100e9 2950 0.31 
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2.2 Numerical Simulation 

The mathematical formulation of infinitely repeating split 

ring unit cell proposed in this study requires the implementation 

of Bloch theorem. Since it is challenging to perform analytical 

derivation of such a material system, the widely accepted Finite 

Element Method has been utilized to solve this problem. While 

calculating the dispersion relation, the complete structure is 

considered infinite in both x- and y- directions by arranging the 

unit cells or the Representative Volume Elements (RVEs) 

periodically. To implement this concept, the Bloch-Floquet 

periodic boundary condition is applied at all boundaries of the 

RVE. These boundary conditions are based on the Floquet theory 

that can be applied to the problem of vibrations with small-

amplitude in spatially periodic structures. The theory states that 

the solution can be sought in the form of a product of two 

functions. One follows the periodicity of the structure, while the 

other one follows the periodicity of the excitation. The problem 

can be solved on a unit cell of periodicity by applying the 

corresponding periodicity conditions to each of the two 

components in the product. Generalized wave equation in the 

composite material can be written as  

𝐶𝑖𝑗𝑘𝑙(𝑥𝑚)[𝑢𝑘,𝑙(𝑥𝑚 , 𝑡) + 𝑢𝑙,𝑘(𝑥𝑚 , 𝑡)] + 𝑓𝑖(𝑥𝑚)

= 𝜌(𝑥𝑚)𝑢𝑖̈ (𝑥𝑚 , 𝑡) 
(1) 

where the constitutive matrix containing material properties 

and the density of the system are the functions of space (𝑥1, 𝑥2). 

𝑖, 𝑗, 𝑘, 𝑙 & 𝑚 takes values 1, 2 & 3. Standard index notation is 

used throughout this manuscript. Let the body force 𝑓(𝑥𝑚)be 

constant. 

The unit cells are repeated in both directions and the solution 

can be assumed in terms of Bloch-Floquet solution as discussed 

in the previous paragraph. Assuming there is no periodicity along 

𝑥3 direction & decoupling the phase component, the 

displacement solution can be viz.  

𝑢𝑖(𝑥𝑚 , 𝑡) =  ∑ ∑ 𝐴𝑖
𝑛1𝑛2 𝑒𝑥𝑝(𝑖𝑘𝑚𝑥𝑚) .

𝑛1𝑛2

 

(2) 

𝑒𝑥𝑝(𝑖𝐺𝑚𝑥𝑚). 𝑒𝑥𝑝(𝑖𝑘3𝑥3) . 𝑒𝑥𝑝 (−𝑖𝜔𝑡) 

Where, 𝑘𝑚 is wave number along 𝑚-th direction and 𝐺𝑚 is 

a component of the reciprocal lattice vector along 𝑚-th direction. 

Here, 𝑚 takes values 1 & 2. 𝐺𝑚 can be expressed as 𝐺𝑚 =
2𝜋𝑛𝑚/𝐷𝑚, where, 𝐷𝑚 is the periodicity of the cells in 𝑚-th 

direction. The 𝐴𝑖
𝑛1𝑛2is the amplitude of the wave modes for 

particle displacement along 𝑖 and 𝑛1& 𝑛2 are the integer numbers 

between −∞ 𝑡𝑜 + ∞.  After substituting Eq. (2) in Eq. (1) the 

Bloch equation with the Bloch operator can be obtained as 

follows 

𝜔2𝜌(𝑥𝑚) ∑ ∑ 𝐴𝑖
𝑛1𝑛2 𝑒𝑥𝑝 (𝑖(𝑘𝑚 + 𝐺𝑚)𝑥𝑚

𝑛1𝑛2

−
1

2
𝐶𝑖𝑗𝑘𝑙(𝑥𝑚)(𝑘𝑚

+ 𝐺𝑚)2𝛿𝑚𝑗) [∑ ∑ 𝐴𝑘
𝑛1𝑛2 𝑒𝑥𝑝(𝑖(𝑘𝑙 + 𝐺𝑙)𝑥𝑙)

𝑛2𝑛1

+ ∑ ∑ 𝐴𝑙
𝑛1𝑛2 𝑒𝑥𝑝(𝑖(𝑘𝑘 + 𝐺𝑘)𝑥𝑘)

𝑛1𝑛1
] = 0 

(3) 

The above equation is a Bloch eigenvalue problem. The Eq. 

(3) is then multiplied with Bloch operator with Bloch 

transformed weighting factor and integrated over the whole 

domain of the body and the equation was transformed to its weak 

form. Periodic boundary conditions are applied around the unit 

cell and weak form of Bloch equation is solved only within the 

irreducible Brillouin Zone. Further number of amplitude in the 

Eq. (3) is reduced for each wavenumber (k) point. Thus the 

𝑛1& 𝑛2 are reduced from infinity and the truncated set of Bloch 

mode expansions were used in the solution method. A suitable 

choice of reduced-order basis was made based on the high 

symmetry points that characterize the periodic lattice. Next, the 

Finite Element discretization was performed. Triangular 

isoparametric elements were used in the simulation. Element 

sizes were determined based on a series of convergence study 

and the minimum wavelength occurred in the material. The sizes 

of the elements were kept to a minimum of 1/10 of the 

corresponding minimum wavelength that occurred in any 

material type, respectively. The Bloch displacement amplitudes 

were discretized using isoparametric shape function (𝑁𝑖(𝒙)) 

suitable for triangular elements for each combination of 𝑛1& 𝑛2 

in their truncated series as follows  

𝑨𝑛1𝑛2 = ∑ 𝑁𝑖(𝒙)Ʌ𝒊

𝟑

𝒊=𝟏

 (4) 

Applying the discretization equations and periodic boundary 

conditions the weak form of Bloch equation reduces to an 

algebraic eigenvalue problem[𝐊(𝑘) − 𝜔2𝐌]�̃� = 𝟎, where �̃� is 

the discrete Bloch amplitude vector which is periodic within the 

unit cell. The K(k) and M are the global stiffness and mass 

matrices, respectively obtained by integrating the element level 

matrices in proper order. Detail expressions for K and M can be 

found in reference. The solution of the eigenvalue problem 

provided the dispersion curves for the proposed periodic media. 

2.3 Validation of Computational Approach 

The studied model configurations in this work are quite 

complex. Hence, it is extremely challenging to perform the 

mathematical formulation and analytically solve the proposed 

models. Hence, a simple mass-in-mass system (Ref. Fig. 2) is 

studied herein using the Finite Element tool to validate the 

solution methodology.  

 

Fig.  2 Single-resonator mass-in-mass system with square 

periodicity (dimensions are in mm). 
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In this simple system, a unit cell is designed which is 

composed of four components. A significantly stiff material, lead 

(component 1), is chosen as a circular resonator [4],[25]. To 

avoid evanescent wave modes, the core resonator is coated with 

softer rubber-like material (component 2). The rubber-lead 

arrangement is then embedded into a relatively stiffer component 

(epoxy). The lead-rubber-epoxy combination is synonymous 

with a well-known mass-in-mass engineered material system 

proposed by the earlier researchers [20]. It is mathematically 

proven that such an engineered system provides frequency band 

gaps (stop bands) by virtually creating negative bulk modulus 

and negative mass density in the structure [21],[26]. In 

engineered material systems, the negative responses result from 

the mismatch of material properties between adjacent 

components. Hence, to induce further property mismatch, the 

mass-in-mass system is placed inside a square unit element and 

the created gap is filled with a relatively softer material 

(polyethylene plastic).  

The complete lead-rubber-epoxy-polyethylene design is 

considered as the Representative Volume Element (RVE) in this 

section. The unit cell is a 105 mm square and diameters of the 

lead, rubber, and epoxy components are considered as 25.4 mm, 

33.9 mm, and 90 mm, respectively. The material property of the 

unit cell components is listed in Table 2. 

Table 2 Properties of the components enclosed in the unit cell. 

 Lead Rubber Epoxy Polyethylene 

Young’s 

Modulus (Pa) 
13e9 10e6 3.5e9 0.7e9 

Density 

(kg/m3) 
11310 980 1250 1050 

Poisson’s 

Ratio 
0.44 0.49 0.38 0.49 

 

Fig.  3 (a) Dispersion relation (b) Mass density plot for the 

single-resonator mass-in-mass system. 

It is well known that the frequency band gaps are the result 

of negative mass density and induction of resonance in local 

microstructures of metamaterials [20],[21],[14],[24]. To validate 

the above statement and adopted FEM solution methodology, a 

multi-layered mass-in-mass model (Ref. Fig. 2) is considered. 

This study is carried out for a frequency range of 0 to10 KHz. 

For illustration purposes, the response is reported between 0 to 4 

KHz in Fig. 3. Computed effective mass densities are normalized 

by the density of the stiffest component (lead) of the cell. The 

effective mass density of the unit cell is calculated by Eq. (5) 

using long wavelength assumption.  

𝜌𝛼𝛽 =
∫ 𝜎𝛼𝛽𝑑𝛤

∫ �̈�𝛼𝛽𝑑𝛤
              (5) 

where 𝛼, 𝛽 = 1, 2 and 𝜎𝛼𝛽 and �̈�𝛼𝛽 are the local stress and 

acceleration quantities. 𝛤 denotes the external boundary of the 

unit cell.  

 

The dispersion curve for the single resonator metamaterial 

within the first Brillouin zone is shown in Fig. 3(a). Using the 

definition of mass density in Eq. (1), it has been found that the 

mass density of the system stays negative between the frequency 

range of 2.27 – 2.71 KHz (Ref. Fig. 3(b)). Alternatively, a stop 

band is observed (Ref. Fig. 3(a)) at a frequency range between 

2.28 - 2.74 kHz (considering Γ-X directional waves). The same 

band gap continues for the entire Γ-X-M-Γ directional waves. 

Since the mass density of the metamaterial (calculated using Eq. 

(1)) is found negative within the frequency range of the stop 

band, it can be concluded that the analytical and numerical 

outcomes are in close agreement. This phenomenon is well 

reported in the literature [20],[21],[14],[24],[27],[28].  

3. Results and Discussion 

In order to investigate the influence of resonator geometry, 

six (6) models are proposed as described in Fig. 1. It is 

hypothesized that resonator geometry as well as the volume 

fraction of resonators in the unit cell and type of resonator 

arrangement may have a considerable impact on frequency 

bands. The dispersion relation of the irreducible Brillouin zone 

(see Fig. 4(b)) for model 1a (Ref. Fig. 1(a)) is shown in Fig. 4(a). 

Note that, the wave vector is normalized by the length of the unit 

cell ‘a’. 

 

(a) 
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(b) 

Fig.  4 (a) Dispersion curve and band gap representation 

for model 1a. (b) First Brillouin Zone.  

In Fig. 4(a), almost all the frequency bands seem highly 

dispersive, whereas a strong weakly-dispersive (straight) region 

is observed in the first frequency band, and a stop band is noticed 

between 7th and 8th frequency bands. The primary focus in this 

section is to study the transformation of the band gaps due to the 

alteration of resonator geometry and settings, For comparison, 

the magnified region of the band gaps for all the models are 

plotted in Fig. 5 (set 1) and 6 (set 2). 

 

Fig.  5 Magnified dispersion curve representations for resonator set-1 (models 1a-1c). 

 

Fig.  6 Magnified dispersion curve representations for resonator set-2 (models 1d-1f). 

A band gap with a bandwidth of 562 Hz is observed between 

21.598 KHz to 22.16 KHz for the unit cell with a center ball, 

circular ring, and closed elliptical ring resonators (Fig. 5(a)) and 

Table 3). However, the bandwidth is reduced to 402 Hz (Fig. 

5(b)) and 241 Hz (Fig. 3(c) and Table 3) through the splitting of 

the elliptical resonator in one end and both ends, respectively. A 

similar trend is also noticed for other sets of models where two 

additional half-circular resonators are placed symmetrically. The 

longest stop band is recorded for model 1d with a bandwidth of 

792 Hz and reduced to 661 Hz and 528 Hz, for models 1e and 1f, 

respectively.  

Volume fractions of the resonators in the respective unit cell 

are listed in Table 3. It is evident that for each set of models, the 

stop bandwidth can be increased/decreased with the 

increment/decrement of the volume fraction of the resonators, 

and it follows a linear pattern. Such a linear pattern is true for any 

particular set of resonators and can be shifted significantly 

through the alteration of the resonator set as found in Fig. 7. This 

finding implies that the same stop band can be maintained with 

(a) (b) (c) 

(a) (b) (c) 
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different volume fractions of the resonators and there is also a 

possibility to obtain longer band gaps with unchanged volume 

fraction. In both cases, the selection of resonators configuration 

in the unit cell would be the key challenge. 

 

Table 3 Obtained band gaps and volume fraction of resonators in the unit cell for studied models.  

Model # 
Band Start 

(Hz) 

Band End 

(Hz) 

Band Gap 

(Hz) 

Volume Fraction 

(%) 

a 21598 22160 562 11.38 

b 21608 22010 402 11.17 

c 21623 21864 241 10.96 

d 21454 22246 792 14.13 

e 21453 22114 661 13.91 

f 21457 21985 528 13.70 
 

 

Fig.  7 Stop band manipulation through the alteration of 

resonators volume fractions and setting in unit cell. Each bullet 

defines the obtained stop bandwidth with respect to the volume 

fraction of the resonators in the corresponding proposed model 

(1a-1f, see Fig. 1). 

Fig. 7 shows the influence of the volume fraction of the 

resonators on OVERALL stop bandwidth. Here, OVERALL 

means, these stop bands can be found for wave propagation 

through the model along any direction. While the overall band 

gap of a structure is important for filtering wave propagation in 

a three-dimensional space, guided wave propagation (along a 

specific direction) in a structure is not uncommon.  Fig. 8(a) 

represents the stop bandwidths for both set-1 and set-2 if the 

wave enters the structure as a guided x-directional (Γ-X) wave. 

Fig. 8(b) represents a similar phenomenon in the case of the y-

directional (X-M) wave. It can be seen that the stop bands are 

heavily influenced by the volume fraction of the resonator for 

wave propagation in Γ-X direction, which is similar to the overall 

response reported in Fig. 7 However, in the case of wave 

propagation in X-M direction, the effect of volume fraction isn’t 

much significant, where a little increase in stop bandwidth is 

identified (Fig. 8(b)).  

In a bandgap region, it can be seen that two bands from the 

dispersion curve take a role in forming the stop band (Ref. Fig. 

4(a)).  To understand the influence of resonator volume fraction 

on those band gap forming frequency bands, a further 

investigation is performed and the results are presented in Figs. 

9-11. Fig. 9 presents the shift in the lower and upper band of the 

overall bandgap for different volume fractions. Figs. 10 and 11 

present similar outputs for x-directional and y-directional guided 

waves, respectively. In all these figures, it can be noticed that the 

volume fraction of the resonators in the unit cell possesses almost 

no influence on the lower band (start frequency) of the stop band 

for both sets (a-c and d-f) of models. 

  

(a) 

     

 

(b) 

Fig.  8 Influence of volume fraction on stop bandwidth for 

wave propagation along (a) Γ-X or x-direction, and (b) X-M or 

y-direction. 

However, the upper bands of the bandgap show a significant 

dependency on the volume fraction. Note that, for X-M 



R. Ahmed, H. Ahmed and S. Banerjee/JEA Vol. 01(03) 2020, pp 85-93 

 

91 

 

directional wave incidence (Fig. 11) both the upper and lower 

band of the band gap show very little reliance on volume fraction. 

Henceforth, the bandgap width also remains almost unchanged. 

Upon investigation of the mode shape, it has been found that the 

frequency bands forming the stop bands along X-M direction are 

predominantly the result of Bragg scattering, where deformation 

of the matrix element in the unit cell controls the formation of the 

band structure. In such instances deformation of the ring 

resonators is quite negligible. Hence, a change in the volume 

fraction of the ring resonators making a negligible effect on the 

band structure or band gap along X-M direction. On the contrary, 

the upper band to form the frequency band gap along Γ-X 

direction is the result of the combined effect of Bragg scattering 

and local resonance of the metal resonators. Such observation is 

also true for the upper bands of the overall stop bands in Fig. 9. 

Hence, a change in the volume fraction of the resonators shifted 

the upper bands for both overall and Γ-X directional waves.  

 

(a)       (b) 

Fig.  9 Shift in start and end of the overall band gap due to the change in volume fraction 

 

(a)       (b) 

Fig.  10 Shift in start and end of the band gap along Γ-X due to the change in volume fraction 

 

(a)       (b) 

Fig.  11 Shift in start and end of the bandgap along X-M due to the change in volume fraction 
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In Figs. 9-11, it can be seen the influence of the resonator’s 

volume fraction on stop bandwidth. However, because of the 

different scaling in both x- and y-axis it can be a little difficult to 

identify how much the volume fraction is taking part in 

controlling the bandgap width for various situations. For 

example, in Figs. 9-10, all the presentations look almost the 

same. In that context, the volume fraction possesses almost equal 

influence for both the set of models and for both overall and x-

directional waves. To have a clearer understanding, a percentage 

increase in bandgap width due to the increase of volume fraction 

is plotted in Fig. 12. It can be seen that using the model set-1, 

maximum increase (about 135%) can be obtained in the case of 

overall bandwidth (ref. Fig. 12(a)). Whereas, almost negligible 

increase is visible in X-M directional wave. A similar trend can 

be visible for model set-2 as well (ref. Fig. 12(b)). However, the 

maximum increase for set-2 in the overall bandgap is about 50%, 

which is significantly lower than the gain reported for set-1 in 

Fig. 12(a).  

 

(a) 

 

(b) 

Fig.  12 Percentage increase in band gap width for models 

(a) 1a-1c (set 1), (b) 1d-1f (set 2) 

4. Conclusion 

Manipulating frequency band gaps by designing novel 

configurations of metamaterials is one of the key areas of interest 

in recent days. In this purpose, mass-in-mass and layer-in-layer 

models were proposed by the previous researchers. However, 

dependency of frequency band gaps on resonator setting and 

volume fraction of the resonators in a unit cell were still to 

investigate. In this work, multi-scale mass-in-mass systems 

containing split-ring resonators are investigated to understand 

the influence of resonator setting and volume fraction on the 

frequency stop bands. It has been found that, in any resonating 

setup, width of the frequency bandgap can be linearly 

manipulated through the alteration of volume fraction of 

resonators in the unit cell. However, the linear pattern can be 

shifted sidewise by changing the resonator set by introducing or 

taking off a resonator from the unit cell. It has been noticed that 

lower band of the stop band remains unaffected with the change 

of volume fraction and the upper band can be shifted 

upward/downward through the increase/decrease of volume 

fraction of the resonators.  This study also confirms that, with a 

lower number of resonators it is possible to manipulate the 

frequency band gap heavily by changing the volume fraction, in 

comparison to a higher number of resonators. In totality, this 

study concludes that, in a metamaterial, frequency bands are 

strongly sensitive to resonator setting and volume fraction in a 

unit cell.  
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