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ABSTRACT   

We propose an efficient sparsity-preserving reduced-order modelling approach for index-1 descriptor systems extracted from large-

scale power system models through two-sided projection techniques. The projectors are configured by utilizing Gramian based singular 

value decomposition (SVD) and Krylov subspace-based reduced-order modelling. The left projector is attained from the observability 

Gramian of the system by the low-rank alternating direction implicit (LR-ADI) technique and the right projector is attained by the 

iterative rational Krylov algorithm (IRKA). The classical LR-ADI technique is not suitable for solving Riccati equations and it demands 

high computation time for convergence. Besides, in most of the cases, reduced-order models achieved by the basic IRKA are not stable 

and the Riccati equations connected to them have no finite solution. Moreover, the conventional LR-ADI and IRKA approach not 

preserves the sparse form of the index-1 descriptor systems, which is an essential requirement for feasible simulations. To overcome 

those drawbacks, the fitting of LR-ADI and IRKA based projectors from left and right sides, respectively, desired reduced-order 

systems attained. So that, finite solution of low-rank Riccati equations, and corresponding feedback matrix can be executed. Using the 

mechanism of inverse projection, the Riccati-based optimal feedback matrix can be computed to stabilize the unstable power system 

models. The proposed approach will maintain minimized ℌ2 -norm of the error system for reduced-order models of the target models. 

Keywords: Singular Value Decomposition, Krylov Subspace, Alternative Direction Implicit, Riccati Equation, ℋ2-norm, Optimal 

Feedback Stabilization. 
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1 Introduction   

The index-1 descriptor systems of the first-order are 

conventionally the technical arrangement of sparse sub-matrices 

with appropriate structure. These sub-matrices are arranged in 

system-oriented input-output combinations. These systems can 

be formed as  

 

𝐸11𝑥1̇(𝑡) = 𝐴11𝑥1(𝑡) + 𝐴12𝑥2(𝑡)  + 𝐵1𝑢(𝑡), 
0 =  𝐴21𝑥1(𝑡) + 𝐴22𝑥2(𝑡) + 𝐵2𝑢(𝑡), 
𝑦(𝑡) =  𝐶1𝑥1(𝑡) + 𝐶2𝑥2(𝑡) + 𝐷𝑢(𝑡), 

𝑥(𝑡0) = 𝑥0,     𝑡 ≥ 𝑡0. 

(1) 

 

In system (1), 𝐸11 ∈ ℝn1×n1  is the differential coefficient 

matrix, and 𝐴11 ∈ ℝn1×n1 , 𝐴12 ∈ ℝn1×n2 , 𝐴21 ∈ ℝn2×n1 , 

𝐴22 ∈ ℝn2×n2  are the state sub-matrices. The control multiplier 

sub-matrices 𝐵1 ∈ ℝn1×p, 𝐵2 ∈ ℝn2×p with the state multiplier 

sub-matrices 𝐶1 ∈ ℝm×n1 , 𝐶2 ∈ ℝm×n2 . The direct gain matrix 

𝐷 ∈ ℝm×p is for the input to output transfer without alteration, 

it remains zero in many of the physical systems, for instance, 

power systems models. Here, the system dimension of the 

system (1) is 𝑛 = 𝑛1 + 𝑛2 with the dimensions of input and 

output 𝑝 and 𝑚, respectively. In the case of large-scale systems 

𝑛 is very large, whereas 𝑝, 𝑚 are comparatively smaller. The 

vectors 𝑥1(𝑡) ∈ ℝn1  , 𝑥2(𝑡) ∈ ℝn2  are for state vectors, 

whereas 𝑢(𝑡) ∈ ℝ𝑝 and 𝑦(𝑡) ∈ ℝ𝑚represent the input (control) 

and output vectors, respectively. The sub-matrices 𝐸11 and 𝐴22 

have the full rank [1]-[2]. 

For further manipulation, 𝑥2(𝑡) = −𝐴22
−1𝐴21𝑥1(𝑡) −

𝐴22
−1𝐵2𝑢(𝑡) needs to be eliminated from the algebraic (second) 

part of the Equation (1). Then the Schur complements of the 

system (1) can be formed as  
 

𝑥 ≔ 𝑥1, ℰ ≔ 𝐸11, 𝒜 ≔ 𝐴11 − 𝐴12𝐴22
−1𝐴21, 

        ℬ ≔ 𝐵1 − 𝐴12𝐴22
−1𝐵2 , 𝒞 ≔ 𝐶1 − 𝐶2𝐴22

−1𝐴21,  
𝒟 ≔ 𝐷 − 𝐶2𝐴22

−1𝐵2 . 
(2) 

 

Using the Schur complements given in (2), the index-1 

descriptor system (1) can structure into an analogous generalized 

LTI continuous-time system as  

 

ℰ𝑥̇(𝑡) = 𝒜𝑥(𝑡) + ℬ𝑢(𝑡), 
𝑦(𝑡) = 𝒞𝑥(𝑡) + 𝒟𝑢(𝑡). 

(3) 

 

Applying Laplace transformation, the transfer function for 

the system (3) can be found as 

 

𝐺(𝑠) = 𝒞(𝑠ℰ − 𝒜)−1ℬ + 𝒟;    𝑠 ∈ ℂ. (4) 

The implications of LTI continuous-time systems are 

inescapable in the branches of engineering fields with the 

applications of applied mathematics, for example, system and 

control theory, mechatronics, power electronics [3]-[5]. 

Continuous-time Algebraic Riccati Equation (CARE) plays a 

premier role in engineering applications, such as the systems that 
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originated from mechanical and electrical fields [6]-[7]  . The 

CARE yields from the system (3) can be formed as 

 

𝒜𝑇𝑋ℰ + ℰ𝑇𝑋𝒜 − ℰ𝑇𝑋ℬℬ𝑇𝑋ℰ + 𝒞𝑇𝒞 = 0. (5) 

       If all of the eigenvalues of the Hamiltonian matrix of the 

system (3) lie outside the imaginary axis, the solution 𝑋 of the 

CARE (5) is then unique and finite [8].  The symmetric 

positive-definite Matrix 𝑋 is called stabilizing if the closed-

loop matrix 𝒜 − (ℬℬ𝑇)𝑋ℰ exists and is stable. Some of the 

systems, that have eigenvalues very close to the imaginary axis 

are called semi-stable systems. For an unstable type of system 

(3), the optimal feedback matrix 𝐾𝑜 = ℬ𝑇𝑋ℰ needs to estimate 

to apply the Riccati-based feedback stabilization [9]. 

Implementing the desired 𝐾𝑜, the matrix 𝒜𝑠 = 𝒜 − 𝐵𝐾𝑜 can 

be formed to replace the system matrix 𝒜. Then the optimally 

stabilized target system can be written as  

 

ℰ𝑥̇(𝑡) = 𝒜𝑠𝑥(𝑡) + ℬ𝑢(𝑡), 
𝑦(𝑡) = 𝒞𝑥(𝑡) + 𝒟𝑢(𝑡). 

(6) 

 

In the previous works, we have discussed the rational 

Krylov subspace method (RKSM) and the Kleinman-Newton 

technique for the Riccati-based feedback stabilization 

technique for unstable index-1 descriptor systems [10]-[11]. 

The linear quadratic regulator (LQR) approach is the key of the 

RKSM and the low-rank Cholesky-factor integrated alternative 

direction implicit (LRCF-ADI) approach requires in the 

Kleinman-Newton technique. A modified form of the iterative 

rational Krylov algorithm (IRKA) technique was recently 

derived to treat that of the systems through optimal feedback 

stabilization [12]. In those works, some unstable systems 

extracted from the Brazilian Interconnected Power System 

(BIPS) models are deliberated to stabilize.  

In this work, we introduce two-sided projection techniques 

for Riccati-based feedback stabilization for unstable BIPS 

models utilizing reduced-order modeling, which is a coupled 

approach of singular value decomposition and Krylov subspace 

and naming as Iterative SVD-Krylov Algorithm (ISKA). The 

reduced-order models will be validated through the ℋ2 norm 

of the error system. Comparative discussion on the present 

work and IRKA approaches will be done. 

2 Preliminaries 

The Lyapunov equation consisting of observability 

Gramian 𝒬 of the system (3) has the form 

𝒜𝑇𝒬ℰ + ℰ𝑇𝒬𝒜 + 𝒞𝑇𝒞 = 0. (7) 

Computation of the 𝒬 by solving the Equation (7) 

containing large-scale matrices by the direct solvers is 

infeasible for the large-scale systems, sometimes it may 

impossible for the rising size of the system components. Thus, 

the observability Gramian factor 𝑍𝑞 needs to be estimated by 

any feasible approach. There are some efficient techniques 

available for executing 𝑍𝑞, for example, low-rank Cholesky-

factor-based Alternating Direction Implicit (LRCF-ADI) [13]-

[14]. Then the Gramian, 𝒬 = 𝑍𝑞𝑍𝑞
𝑇 can be approximated as the 

solution of the Lyapunov Equation (7). The LRCF-ADI 

approach for computing 𝑍𝑞 is provided in Algorithm 1. 

Algorithm 1: First-order LRCF-ADI Algorithm [13] 

 Input: ℰ, 𝒜, ℬ, 𝒞, 𝜏 (tolerance),  𝑖𝑚𝑎𝑥 (iterations), and 

{𝜇𝑗}
𝑗=1

𝑖𝑚𝑎𝑥
 (initial shifts). 

 Output: Low-rank Cholesky-factor 𝑍𝑞 for 𝒬 = 𝑍𝑞𝑍𝑞
𝑇 .  

1 Assume at 𝑖 =  1, 𝑍0  =  [ ] and 𝑊0  =  𝐶𝑇 . 

2 while ‖𝒲𝑖−1𝒲𝑖−1
𝑇 ‖ ≥ 𝜏 or 𝑖 ≤ 𝑖𝑚𝑎𝑥 do 

3      Solve 𝒱𝑖 = (𝒜𝑇 + 𝜇𝑖ℰ𝑇)−1𝒲𝑖−1. 

4      if 𝐼𝑚(𝜇𝑖) = 0 then 

5           Update 𝑍𝑖 = [𝑍𝑖−1 √−2𝜇𝑖𝒱𝑖], 

6           Compute 𝒲𝑖 = 𝒲𝑖−1 − 2𝜇𝑖ℰ𝑇𝒱𝑖 . 

7      else 

8           Assume 𝛾𝑖 = √−2𝑅𝑒(𝜇𝑖), 𝛿𝑖 =
𝑅𝑒(𝜇𝑖)

𝐼𝑚(𝜇𝑖)
,  

9             Update  𝑍𝑖+1 =

[𝑍𝑖−1 𝛾𝑖(𝑅𝑒(𝒱𝑖) + 𝛿𝑖𝐼𝑚(𝒱𝑖) 𝛾𝑖√𝛿𝑖
2 + 1𝐼𝑚(𝒱𝑖)], 

10  Compute,𝒲𝑖+1 = 𝒲𝑖−1 − 4𝑅𝑒(𝜇𝑖)ℰ𝑇[𝑅𝑒(𝒱i) +
δi𝐼𝑚(𝒱i)]. 

11           𝑖 = 𝑖 + 1 

12      end if 

13      𝑖 = 𝑖 + 1 

14 end while 

 

Considering the computationally feasible 𝑟-dimensional 

reduced-order model (ROM) of the system (3) as 

ℰ̂𝑥̇̂(𝑡) = 𝒜̂𝑥̂(𝑡) + ℬ̂𝑢̂(𝑡), 
  𝑦̂(𝑡) = 𝒞̂𝑥̂(𝑡) + 𝒟̂𝑢̂(𝑡), 

(8) 

 

where ℰ̂ ∈ ℝ𝑟×𝑟 , 𝒜̂ ∈ ℝ𝑟×𝑟 , ℬ̂ ∈ ℝ𝑟×𝑝, 𝒞̂ ∈ ℝ𝑚×𝑟 and 𝒟̂ ∈
ℝ𝑚×𝑝. 
  

The reduced coefficient matrices of (8) are formed by the 

following way 

ℰ̂ = 𝑊𝑇ℰ𝑉, 𝒜̂  = 𝑊𝑇𝒜𝑉, ℬ̂  = 𝑊𝑇ℬ, 

𝒞̂ = 𝒞𝑉, 𝒟̂ = 𝒟. 
(9) 

 

The transfer function of the ROM (8) can be found as 

 

𝐺̂(𝑠) = 𝒞̂(𝑠ℰ̂ − 𝒜̂)
−1

ℬ̂ + 𝒟̂; 𝑠 ∈ ℂ. (10) 

 
The right projector V is built by the well-known Krylov-

based interpolatory techniques IRKA given in [15]-[16] as 

𝑉 = [(𝛼1ℰ − 𝒜)−1ℬ𝑏1, … , (𝛼𝑟ℰ − 𝒜)−1ℬ𝑏𝑟  ], (11) 

where {𝛼𝑖}𝑖=1
𝑟  and {𝑏𝑖}𝑖=1

𝑟  are the interpolation points and 

tangential direction respectively. The left projector 𝑊 is 

computed by the observability Gramian 𝒬 utilizing the singular 

value decomposition-based techniques discussed in [17]-[19] as 

𝑊 = 𝒬𝑉(𝑉𝑇𝒬𝑉)−1. (12) 

The successive steps of the computation of the ROM (8) 

are exhibited in Algorithm 2. 
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Algorithm 2: First-order ISKA [17] 

 Input: ℰ, 𝒜, ℬ, 𝒞, 𝒟  and   𝑍𝑞 (from Algorithm 1). 

 Output: ℰ̂, 𝒜̂, ℬ̂, 𝒞̂, 𝒟̂ ≔ 𝒟. 

1 Choose the initial interpolation points {𝛼𝑖}𝑖=1
𝑟   and the 

tangential directions {𝑏𝑖}𝑖=1
𝑟 . 

2 Construct 𝑉 = [(𝛼1ℰ − 𝒜)−1ℬ𝑏1, … , (𝛼𝑟ℰ − 𝒜)−1ℬ𝑏𝑟  ]. 

3 Compute 𝒬 =  𝑍𝑞𝑍𝑞
𝑇 and construct 𝑊 = 𝒬𝑉(𝑉𝑇𝒬𝑉)−1. 

4 while (𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑) do 

5      Find ℰ̂ = 𝑊𝑇ℰ𝑉, 𝒜̂ = 𝑊𝑇𝒜𝑉, ℬ̂ = 𝑊𝑇ℬ, 𝒞̂ = 𝒞𝑉. 

6      for 𝑖 =  1, … , 𝑟. do  

7  Evaluate 𝒜̂𝑧𝑖 = 𝜆𝑖ℰ̂𝑧𝑖   and 𝑦𝑖
∗𝒜̂ = 𝜆𝑖𝑦𝑖

∗ℰ̂ to find 

𝛼𝑖 ⟵ −𝜆𝑖 , 𝑏𝑖
∗ ⟵ −𝑦𝑖

∗ℬ̂. 
8      end for 

9      Repeat Step-2 and Step-3. 

10      𝑖 = 𝑖 + 1 

11 end while 

12 Repeat Step-5 to find the reduced-order matrices. 

3 Sparsity-preserving SVD-Krylov techniques for the 

stabilization of first-order index-1 descriptor system  

The objective of this work is to reduce the dimension of 

the first-order index-1 system (1) by keeping the sparse 

structure invariant through the Iterative SVD-Krylov 

Algorithm (ISKA) approach. To do this, it is essential to 

modify some steps of first-order ISKA and LRCF-ADI 

algorithms in terms of sparse sub-matrices. 

3.1 Sparsity-preserving LRCF-ADI approach for the first-

order index-1 descriptor system 

The LRCF-ADI method of first-order was discussed in 

[13],[20]-[21]. The modification of the LRCF-ADI algorithm 

for the structure-preserving second-order form can be derived 

as follows. 

For the truncated term Γ, the first iteration of the Step-3 of 

Algorithm 1 can be written as 

(𝒜𝑇 + 𝜇1ℰ𝑇)𝒱1 = 𝒞𝑇 , 

𝑜𝑟, ([
𝐴11 𝐴12

𝐴21 𝐴22
]

𝑇

+ 𝜇1 [
𝐸11 0
0 0

]
𝑇

) [
𝒱1

𝛤
] = [

𝐶1
𝑇

𝐶2
𝑇]. 

 
(13) 

 
Thus, we have 

  

[
𝐴11

𝑇 + 𝜇1𝐸11
𝑇 𝐴21

𝑇

𝐴12
𝑇 𝐴22

𝑇 ] [
𝒱1

𝛤
] = [

𝐶1
𝑇

𝐶2
𝑇]. 

(14) 

 

As a consequence, for 𝑖 ≥ 2, the next 𝑖 − 𝑡ℎ iteration takes 

the form 

[
𝐴11

𝑇 + 𝜇𝑖𝐸11
𝑇 𝐴21

𝑇

𝐴12
𝑇 𝐴22

𝑇 ] [
𝒱𝑖

𝛤
] = [

𝒲𝑖−1

0
]. 

(15) 

 

If the estimated shift parameter has no imaginary part, then 

the Step-6 of Algorithm 1 can be formed as 

𝒲𝑖 = 𝒲𝑖−1 − 2𝜇𝑖𝐸11
𝑇 𝒱𝑖 . (16) 

Otherwise, for 𝛿𝑖 =
𝑅𝑒(𝜇𝑖)

𝐼𝑚(𝜇𝑖)
, the Step-10 of Algorithm 1 can 

be expressed as 

𝒲𝑖+1 = 𝒲𝑖−1 − 4𝑅𝑒(𝜇𝑖)𝐸11
𝑇 [𝑅𝑒(𝒱𝑖) + 𝛿𝑖𝐼𝑚(𝒱𝑖)]. (17) 

 

The restructured sparse form of LRCF-ADI for the first-

order index-1 system is exhibited in Algorithm 3. 

Algorithm 3: LRCF-ADI for first-order sparse index-1 descriptor 

system 

 Input: 𝐸11, 𝐴11, 𝐴12, 𝐴21, 𝐴22, 𝐵1, 𝐵2, 𝐶1, 𝐶2, 𝜏 

(tolerance), 𝑖𝑚𝑎𝑥 (iterations), and {𝜇𝑗}
𝑗=1

𝑖𝑚𝑎𝑥
 (initial 

shifts). 

 Output: Low-rank Cholesky-factor 𝑍𝑞 for 𝒬 ≈ 𝑍𝑞𝑍𝑞
𝑇 .  

1 Assume at 𝑖 =  1, 𝑍0  =  [ ] and 𝒲0  =  [𝐶1 𝐶2]𝑇 . 

2 while ‖𝒲𝑖−1𝒲𝑖−1
𝑇 ‖ ≥ 𝜏 or 𝑖 ≤ 𝑖𝑚𝑎𝑥 do 

3      Solve (14) to find 𝒱1 and (15) to find 𝒱𝑖    ;   𝑖 ≥ 2. 

4      if 𝐼𝑚(𝜇𝑖) = 0 then 

5           Update 𝑍𝑖 = [𝑍𝑖−1 √−2𝜇𝑖𝒱𝑖], 

6           Compute the updated value of  𝒲𝑖 by (16) 

7      else 

8           Assume 𝛾𝑖 = √−2𝑅𝑒(𝜇𝑖), 𝛿𝑖 =
𝑅𝑒(𝜇𝑖)

𝐼𝑚(𝜇𝑖)
,  

9           Update 𝑍𝑖+1 =

[𝑍𝑖−1 𝛾𝑖(𝑅𝑒(𝒱𝑖) + 𝛿𝑖𝐼𝑚(𝒱𝑖) 𝛾𝑖√𝛿𝑖
2 + 1𝐼𝑚(𝒱𝑖)], 

10           Compute the updated value of  𝒲𝑖+1 by (17). 

11           𝑖 = 𝑖 + 1 

12      end if 

13      𝑖 = 𝑖 + 1 

14 end while 

3.2 Sparsity-preserving ISKA for first-order index-1 

descriptor system 

Algorithm 2 needs to reform in the sparse form with the 

system matrices of (1). In the Step-2 of this algorithm, projector 

𝑉 needs to be re-structured utilizing the first-order sparse 

matrices. Let us consider the 𝑖 − 𝑡ℎ iteration of 𝑉 be expressed 

as 𝑉𝑖 and it can be configured as 

 

(𝛼𝑖ℰ − 𝒜)𝑉𝑖 = ℬ𝑏𝑖 , 

𝑜𝑟, [
𝛼𝑖𝐸11 − 𝐴11 −𝐴12

−𝐴21 −𝐴22
] [

𝑉𝑖

𝛬
] = [

𝐵1

𝐵2
] 𝑏𝑖 . 

(18) 

 

The term Λ is to be truncated. The explicit execution of the 

reduced-order matrices for the system (8) defined in (9) is 

infeasible and contradicts the aim of the work.  

 

The reduced-order matrices can be efficiently acquired by 

the sparsity preserving form as  

 

ℰ̂ = 𝑊𝑇𝐸11𝑉, 𝐴̂ = 𝑊𝑇𝐴11𝑉 − (𝑊𝑇𝐴12)𝐴22
−1(𝐴21𝑉), 

𝐵̂ = 𝑊𝑇𝐵1 − (𝑊𝑇𝐴12)𝐴22
−1𝐵2, 

𝐶̂ = 𝐶1𝑉 − 𝐶2𝐴22
−1(𝐴21𝑉). 

 

(19) 

 

The sparsity-preserving modified form of Algorithm 2 for 

the first-order index-1 system is summarized in Algorithm 4. 
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Algorithm 4: ISKA for first-order sparse index-1 descriptor system 

 Input: 𝐸11, 𝐴11, 𝐴12, 𝐴21, 𝐴22, 𝐵1, 𝐵2, 𝐶1, 𝐶2, 𝐷  and   𝑍𝑞 

(from Algorithm 3). 

 Output: ℰ̂, 𝒜̂, ℬ̂, 𝒞̂, 𝒟̂ ≔ 𝐷 − 𝐶2𝐴22
−1𝐵2.  

1 Choose the initial interpolation points {𝛼𝑖}𝑖=1
𝑟   and the 

tangential directions  {𝑏𝑖}𝑖=1
𝑟 . 

2 Construct 𝑉 = [𝑉1, 𝑉2, … , 𝑉𝑟  ] using (18). 

3 Compute 𝒬 =  𝑍𝑞𝑍𝑞
𝑇 and construct 𝑊 = 𝒬𝑉(𝑉𝑇𝒬𝑉)−1. 

4 while (𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑) do 

5      Find the reduced-order matrices by (19). 

6      for 𝑖 =  1, … , 𝑟. do  

7 Evaluate 𝒜̂𝑧𝑖 = 𝜆𝑖ℰ̂𝑧𝑖 and 𝑦𝑖
∗𝒜̂ = 𝜆𝑖𝑦𝑖

∗ℰ̂ to find  

𝛼𝑖 ⟵ −𝜆𝑖 , 𝑏𝑖
∗ ⟵ −𝑦𝑖

∗𝐵̂. 
8      end for 

9      Repeat Step-2 and Step-3. 

10      𝑖 = 𝑖 + 1 

11 end while 

12 Repeat Step-5 to find the reduced-order matrices. 

3.3 Computing the optimal feedback matrix from ROM 

System (3) can be written in a reduced-order form as (8) 

by exerting the reduced-order matrices defined in (19) and 

corresponding CARE can be attained as 

𝒜̂𝑇𝑋̂ℰ̂ + ℰ̂𝑋̂𝒜̂ − ℰ̂𝑋̂ℬ̂ℬ̂𝑇𝑋̂ℰ̂ + 𝒞̂𝑇𝒞̂ = 0. (20) 

 

Here 𝑋̂ has the same properties of 𝑋. The MATLAB 

library command care can be applied to solve the low-rank 

CARE (20).  The low-rank stabilizing feedback matrix 𝐾  =
 𝐵̂𝑇𝑋̂ℰ̂ corresponding to the ROM (8) can be computed, and 

consequently approximated the stabilizing optimal feedback 

matrix 𝐾𝑜 of the full model (3) can be reclaimed employing the 

scheme of reverse projection as 

 

𝐾𝑜 = (ℬ̂𝑇𝑋̂ℰ̂)𝑉𝑇𝐸11 = 𝐾𝑉𝑇𝐸11. (21) 

3.4 Optimally stabilized first-order index-1 descriptor 

system 

For the original system (1), optimal feedback matrix 𝐾𝑜 

can be attained by assigning the ROM (8). Then by utilizing  

𝐾𝑜, the optimally stabilized system (1) can be found by 

replacing 𝐴11 and 𝐴21 by 𝐴11 − 𝐵1𝐾𝑜 and 𝐴21 − 𝐵2𝐾𝑜, 

respectively 

3.5 𝓗𝟐-norm of the error system 

Now, the error system associated with the ROM (8) of the 

subjected system (1) by maintaining the form (3) has the form 

 

𝐺𝑒𝑟𝑟 = 𝐺(𝑠) − 𝐺̂(𝑠) = 𝒞𝑒𝑟𝑟(𝑠ℰ𝑒𝑟𝑟 − 𝒜𝑒𝑟𝑟)−1𝐵𝑒𝑟𝑟 , (22) 

where the transfer functions 𝐺(𝑠) and 𝐺̂(𝑠) are connected to the 

systems (1) and (8), respectively. In (22), we have constituted 

 

ℰ𝑒𝑟𝑟 = [
ℰ 0
0 ℰ̂

] , 𝒜𝑒𝑟𝑟 = [
𝒜 0
0 𝒜̂

] , 

ℬ𝑒𝑟𝑟 = [
ℬ
ℬ̂

]   𝑎𝑛𝑑 𝒞𝑒𝑟𝑟 = [𝒞 −𝒞̂]. 

(23) 

The observability Lyapunov equation corresponding to the 

Graminan 𝒬𝑒𝑟𝑟  of the error system (22) is 

 

𝒜𝑒𝑟𝑟
𝑇 𝒬𝑒𝑟𝑟ℰ𝑒𝑟𝑟 + ℰ𝑒𝑟𝑟

𝑇 𝒬𝑒𝑟𝑟𝒜𝑒𝑟𝑟 + 𝒞𝑒𝑟𝑟
𝑇 𝒞𝑒𝑟𝑟 = 0. (24) 

 

For the error system (22), the Authors in [5] explored an 

efficient approach to approximate the ℋ2-norm as 

 

‖𝐺𝑒𝑟𝑟‖ℋ2
= √𝑡𝑟𝑎𝑐𝑒(ℬ𝑒𝑟𝑟

𝑇 𝒬𝑒𝑟𝑟ℬ𝑒𝑟𝑟) 

= √‖𝐺(𝑠)‖ℋ2

2 + ‖𝐺̂(𝑠)‖
ℋ2

2
+ 2𝑡𝑟𝑎𝑐𝑒(ℬ𝑇𝒬𝑠ℬ̂) 

(25) 

 

Here, ‖𝐺(𝑠)‖ℋ2
 is the ℋ2-norm of the full model which 

we need to evaluate at one time in computation but this is 

unfeasible to investigate for a large-scale system by any direct 

solver. Suppose 𝑍𝑞 is the low-rank Gramian factor that can be 

successfully determined by rearranging Algorithm 3, such that 

𝑄 = 𝑍𝑞𝑍𝑞
𝑇 , then ‖𝐺(𝑠)‖ℋ2

can be written as 

 

‖𝐺(𝑠)‖ℋ2

2 = 𝑡𝑟𝑎𝑐𝑒(ℬ𝑇𝑄ℬ) 

= 𝑡𝑟𝑎𝑐𝑒(𝐵1
𝑇(𝑍𝑞𝑍𝑞

𝑇)𝐵1 + 𝐵2
𝑇(𝑍𝑞𝑍𝑞

𝑇)𝐵2). 

(26) 

 

Again, the ℋ2-norm of the ROM, ‖𝐺̂(𝑠)‖
ℋ2

 can be 

enumerated by the Gramian 𝒬̂ of the low-rank Lyapunov 

equation  

 

that consists of reduced-order matrices. Due to the small size of 

these matrices, the following Lyapunov equation is solvable by 

the MATLAB library command lyap. 

Finally, trace(ℬ𝑇𝒬𝑠ℬ̂) can be measured by the low-rank 

Gramian 𝒬𝑠 of the sparse-dense Sylvester equation 

 

𝒜𝑇𝒬𝑠ℰ̂ + ℰ𝑇𝒬𝑠𝒜̂ + 𝒞𝑇𝒞̂ = 0, (28) 

that can be efficiently solved by the techniques presented in 

Algorithm 4 of [22]. 

4 Numerical results 

The derived method ISKA is validated by implementing 

some models evolved from Brazilian Interconnected Power 

System (BIPS) [23]. The computations are performed 

numerically by MATLAB® R2015a (8.5.0.197613) with a 

processor 4 × Intel®CoreTMi5 − 6200U incorporating a 

memory capacity of 16 GB with a clock speed of 2.30 GHz. 

Table 1 displays the dimensions of the discussing models 

along with analogous input-output structures, and the size of the 

corresponding ROMs gained by the developed technique ISKA 

as illustrated in Algorithm 4.  

Table 1 Model examples with input-output structures 

Model Full model (n) Input/Output ROM (r) 

BIPS-606 7135 4/4 30 

BIPS-1998 15066 4/4 70 

BIPS-2476 16861 4/4 100 

BIPS-3078 21128 4/4 120 

𝒜̂𝑇𝒬̂ℰ̂ + ℰ̂𝑇𝒬̂𝒜̂ + 𝒞̂𝑇𝒞̂ = 0, (27) 
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The models are named on the number of the states they 

consist of [24]. Detailed of those models are available on the 

web-page. 

In the previous work [12], it is found that IRKA based 

reduced-order model for the semi-stable model BIPS-3078 has 

no finite solution of the corresponding Riccati equation but the 

ISKA approach has no such kind of limitation.  

4.1 Frequency domain analysis 

All the above-mentioned power system models are 

structurally identical and have the same physical attributes. For 

the compactness of the work, only the comparative analysis of 

the transfer function of model BIPS-3078 is provided. 

 
(a) Sigma plot 

 
(b) Absolute error 

 
(c) Relative error 

Fig. 1 Comparison of full model and ROM of the model BIPS-

3078 

Sub-figures of Fig. 1 gives graphical validation of the 

efficient match of the transfer function of model BIPS-3078 

with the corresponding ISKA-based ROM. Fig. 1a displays 

comparison transfer functions, whereas Fig. 1b and Fig. 1c 

depict the absolute error and relative error in computing the 

ROM of the target model. 

From the above-displaying figures, it can be said that the 

ISKA-based approach is efficient for finding desired ROM of 

the target model. 

4.2 Stability analysis 

Sub-figures of Fig. 2 exhibit the stabilized step-responses of 

the model BIPS-3078 for the dominant input-output relations. 

From the foregoing figures, it has been seen that in every 

input-output relation, the step-responses of the model BIPS-3078 

optimally stabilized. 

 
(a) 1st input / 4th input 

 
(b) 2nd input / 1st input 

 
(c) 3rd input / 2nd input 

 
(d) 4th input / 3rd input 

Fig. 2 Stabilization of step-responses of the model BIPS-3078 

From the aforesaid figures, it is revealed that the eigenvalues 

of the models BIPS-606, BIPS-1998, and BIPS-2476 are 

stabilized efficiently. 

file:///C:/Users/USER/AppData/Local/Temp/1https:/sites.google.com/site/rommes/software
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Sub-figures of Fig. 3 demonstrate the optimal feedback 

stabilization of the eigenvalues of the BIPS models. 

 

(a) BIPS-606 

 

 
              (b) BIPS-1998 

 
            (c) BIPS-2476 

 

 
            (d) BIPS-3078 

Fig. 3 Eigenvalue stabilization of BIPS models 

But the stabilization process for the semi-stable model 

BIPS-3078 is mildly interrupted but still acceptable as the 

eigenvalues are in the very small neighborhood of the imaginary 

axis (a very magnified view is provided). 

4.3 𝓗𝟐-norm comparisons 

Table 2 represents the ℋ2 error norm of the full model and 

the corresponding ROM of the BIPS models. This table is 

numerical evidence of the robustness of the proposed approach. 

Table 2  ℋ2 error norm the of the full models and the ROMs 

Model BIPS-

606 

BIPS-

1998 

BIPS-

2476 

BIPS-

3078 

𝓗𝟐 

error 

norm 

2.16
× 100 

1.22
× 10−2 

4.34
× 10−4 

2.05
× 10−4 

It has been audited that the ℋ2 error norms are decreasing 

with the increasing size of the target models. Thus, the ISKA 

approach is expedient to minimize the ℋ2 error norms of the 

considering models and it gives a better approximation for the 

models of the larger size. 

5 Conclusion 

We have discussed a sparsity-preserving two-sided 

projection-based reduced-order modelling approach for index-

1 descriptor systems of the first-order form. The Gramian based 

singular value decomposition and Krylov-based reduced-order 

modelling are coupled to achieve the reduced-order models. 

The conventional first-order LRCF-ADI and ISKA algorithms 

are modified to the sparse form keeping the structure of the 

target systems invariant. The proposed techniques are devoted 

to the Riccati-based feedback stabilization of the target 

systems. We have tested the validity of the proficiency of the 

derived approaches by implementing them to the power system 

models of the type unstable index-1 descriptor system in the 

first-order form. The robustness is investigated by ℋ2 error 

norms of the reduced-order models corresponding to the target 

models.    
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