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ABSTRACT   

Cancer is one of the most leading causes of death now worldwide. Most of the cancer therapy aims to raise the temperature of the 

cancerous tissue above a therapeutic value and thermally kill or destroy it. Minimizing the damage of the healthy cells surrounding the 

infected cells is one of the major concerns of these therapies. Precise acknowledgment of the temperature profile of living tissue during 

therapy is of utmost necessity for this purpose.  Towards that direction, this paper presents an unsteady finite element model of the 

bioheat equation to analyze the temperature distribution during the thermal therapy. A C language based system has been developed to 

solve the unsteady part of the problem employing Crank-Nicolson method and to solve the linear problem employing the Gauss 

elimination technique.  Using this system, we investigate thermal behaviors in human tissues subjected to constant, sinusoidal spatial 

and surface, point, and stochastic heating. It was found that surface heating is beneficial for treating skin surface cells, while laser 

heating for the cells that lie below the skin surface. Moreover, for deep cell, the point heating style can bring the most desirable outcome. 

Results describe in this paper could be useful for researchers and doctors to optimize the treatment procedure, even protocols. 
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1. Introduction   

Prior acknowledgment of the temperature distribution of 

thermal therapy could help optimize treatment procedures and 

take necessary precautions for probable danger during therapy. 

Undoubtedly experimental study is most welcome in this field. 

However, as human subject involves, the experimental approach 

often became very difficult to perform and result in a hazardous 

situation. Moreover, it is time-consuming and needs costly 

equipment setup. Hence mathematical modeling is preferred in 

that area instead of clinical trials. But the complexity of modeling 

biological systems and treatment procedures makes it so tough in 

practice even impossible. That’s why computational modeling of 

the biological bodies has received considerable attention in the 

research community in the past decade. Rapid advancement in 

computational technology, which enables better accuracy with 

less computational cost, added a new era to this progress. 

Moreover, due to its simplicity in use and low cost, it is widely 

used in simulation of biomedical problems. With the help of 

computer technology and mathematical model, it is possible to 

calculate and visualize the stationary and transient temperature 

inside biological bodies during thermal therapy. 

Heat transfer in living tissue has become a very interesting 

topic for scientists and engineers because of its broad application 

in bioengineering and designing of medical protocols. Many 

therapeutic applications need the proper thermal description of 

the human body. Not only that, but many medical operations also 

rely on engineering methods to determine the safety and risk 

level involved in many surgeries. At present, mathematical 

modeling of Bioheat transfer is widely used in treating tumors, 

cryosurgery, laser eye surgery, and many other applications. The 

success of hyperthermia treatment much depends on the proper 

knowledge of heat transfer in blood perfused tissue [1]-[2]. 

Over the years, several mathematical models have been 

developed to describe the heat transfer within living biological 

tissues. The most widely used bio-heat model was introduced by 

Pennes in 1948 [3]. Pennes Bio-heat-equation has been widely 

used to approximate the overall temperature distribution in 

tissue. The Pennes model was initially used to predict the 

temperature distribution in the human forearm. Due to its 

simplicity (uniform thermal conductivity, blood perfusion, and 

metabolic heat generation), it was implemented in various 

biological research work such as for cancer hyperthermia, 

cryosurgery etc. Therefore, to obtain a flexible solution that can 

solve similar problems is very desirable. Reports on the 

analytical and numerical solutions of the bio-heat transfer 

problem are found in the literature. In some analytical cases, 

sinusoidal heat flux [4] and sometimes cooling of the skin [5] 

were considered as boundary conditions. In some numerical 

analysis, sinusoidal surface heat flux was used as boundary 

condition [6]. Researches related to the bio thermos- mechanical 

were reviewed in [7]. Monte Carlo method was used to solve the 

multidimensional problem in [8]. The result of boundary element 

method and finite element method for the numerical solution of 

the steady state bio-heat transfer model of the human eye were 

compared in [9]-[10]. The finite element method was used for 

the thermal-magneto static analysis in biological tissues in [11]. 

Some commercial software includes bio-heat transfer functions 

with limited boundary conditions. It is quite difficult to have the 

temperature profile of a particular point or a line within the 

biological tissue with different time intervals using that software. 

The development of a free finite element code of bio-heat 
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equations can meet the purpose. The objective of this research is 

to develop a one dimensional finite element code for the solution 

of both steady and transient bio-heat equation. The popular 

Crank-Nicolson method was used in time discretization of the 

transient analysis. The developed finite element code was used 

to simulate the thermal response of tissue during cancer 

hyperthermia, laser surgery, tissue heating with a hot disk, and 

point heating. Moreover, time-dependent spatial and surface 

heating were incorporated. The effect of surface heating, step 

heating, sinusoidal heating, and point heating was thoroughly 

investigated.  The temperature profile for all cases is found with 

valuable information for the physicians and researchers. 

2. Bio Heat Transfer 

For the study of bio-heat transfer in human tissue, the most 

useful one is Pennes equation which can be expressed as 

k
∂2T

∂x2 + ωbρbcb(Ta − T) + Qm + Qr = ρc
∂T

∂t
                        (1) 

For steady state case the Eq. 1(a) is reduced as 

k
∂2T

∂x2 + ωbρbcb(Ta − T) + Qm+Qr = 0                        (2) 

Where ρ, c, k are respectively the density, the specific heat, 

and the thermal conductivity of the tissue; ρb, cb denote density, 

and specific heat of blood, respectively. The ωb is the blood 

perfusion, Ta the known arterial temperature, and T (x, t) is the 

unknown tissue temperature. Where Qm is the metabolic heat, 

and Qr(x,t) is the heat source due to spatial heating. 

Let the one dimensional problem of length L, where the 

skin surface is defined at x = 0 and the body core at x = L. The 

constant body core temperature is defined as Tc, h0 is the 

ambient heat convection coefficient between the skin surface 

and the surrounding air and T0 is the ambient temperature. At 

the skin surface (x = 0), the thermoregulation between the skin 

and ambient air is governed by the thermal convection between 

air and skin. While as the tissue temperature remains constant 

within a narrow limit, i.e., 2-3 cm, the boundary conditions at 

the body core is considered as temperature boundary 

conditions. Thus the boundary conditions for this particular 1-

D problem can be written as: 

−k
∂T(x)

∂x
= −h0[T0 − T(x)]  at   x = 0                                         (3) 

                     T = Tc              at x = L                                     (4) 

In some cases, force convection cooling is applied at the 

skin surface to remove excessive heat from the skin surface, in 

such case the boundary condition at the skin surface is defined 

as 

−k
∂T(x)

∂x
= −hf[Tf − T(x)]  at   x = 0.                                    (5) 

In some cases, the boundary condition is time dependent. So 

time dependent boundary conditions can be expressed as 

−k
∂T(x)

∂x
= 𝑄(t)                    at   x = 0.                                   (6) 

Here Q(t) is the time dependent heat flux. 

2.1 Finite element discretization 

The first step of the finite element discretization is to 

develop a weak form that is a weighted integral statement and 

is equivalent to both the governing differential equation as well 

as a certain type of boundary condition. The simplest form of 

the Eq. (1) is 

 k
∂2T

∂x2 − BT + q = ρc
∂T

∂t
                                       (7)  

Where B = ωb ρb cb and q = BTa+Qm+Qr. The weak form 

of the differential equation (applying the Weighted Residual 

method) is derived as 

∫ [𝑊𝜌𝑐
∂𝑇

∂𝑡
+ 𝑘

𝜕𝑇

𝜕𝑥

𝜕𝑊

𝜕𝑥
− 𝐵𝑊𝑇 − 𝑊𝑞] + (𝑊𝑄)𝑥𝑎

+
𝑥𝑏

𝑥𝑎

(𝑊𝑄)𝑥𝑏
= 0                                                                    (8) 

Where W is the weighted function, and Q is the secondary 

variable. A linear element is considered is this model whose 

temperature function is expressed as 

Th
e(x) = ∑ φj

e(x)Tj
e2

j=1                                                               (9) 

Using the linear approximation of Eq. (9) finally a linear system 

was derived of the following form 

[C]{Ṫ} + [K]{T} = {q} + {Q}                                                (10) 

Where C is the capacitance matrix, K is heat conductive 

matrix and T is unknown temperature and others are known 

vectors. 

2.2 Time Discretization Scheme 

A simple time integration scheme for the Eq. (10) is 

derived by assuming that C and K are constant. In such case, 

the matrix differential equation can be discretized with 

response to time as 

C
Tn+1−Tn

∆T
+ αKTn+1 + (1 − α)KTn = Q + q                      (11) 

Where Tn+1 and Tn are the vectors of unknown nodal 

values at times n∆T and (n + 1)∆T, respectively and α is the 

weighting factor. The α must be chosen in the interval between 

0 and 1. When the value of α is considered 0.5, the process is 

called the popular Crank-Nicolson method. The discretized Eq. 

(11) can be written as: 

(C
1

∆T
+ αK) Tn+1 = [C

1

∆T
− (1 − α)K] Tn + Q + q             (12)                         

The Eq. (12) was solved using an iterative procedure. The 

initial temperature is known and then the temperature of the 

next step is calculated from the solution of Eq. (12) through the 

Gauss elimination technique. 

2.3 Boundary Conditions and Input Parameters 

Throughout the study at X=L, the temperature boundary 

condition is used.  

However, depending upon the types of heating boundary 

condition (3), (5) and (6) is used at X=0. 

In section 3.2, 3.3, 3.8, and 3.9 boundary condition (3) is 

used at the skin surface. Heat flux boundary condition Eq. (6) 

is used in sections 3.4 and 3.5 at X=0. Where the force 

convection boundary condition Eq. (5) is used in sections 3.6 

and 3.7. The input parameters used in this study is summarized 

in Table 1 [12]. 
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Table 1 Input Parameters. 

Parameters Value 

Thermal conductivity (k) 0.5 w/m2 

Convection Coefficient (ho) 10 w/m2 

Forced convection coefficient (hf) 100 w/m2 

Environmental Temperature (T0) 25 oC 

Temperature of the Artery (Ta) 37 oC 

Body core temperature (Tc) 37 oC 

Metabolic heat generation (Qm) 33800 w/m2 

Density of blood (ρb) 1000 kg/m3 

Density of tissue (ρ) 1000 kg/m3 

Specific heat of blood (cb) 4200 J/kg.°C 

Specific heat of tissue (c) 4200 J/kg.°C 

Blood perfusion (ωb) 0.0005 ml/s/ml 

3. Results and Discussion 

For the simple thermal analysis, from the skin surface to 

tissue body is enough to consider. So to avoid the 

computational complexity, a 1D tissue of length (L) of 30 mm 

is considered as a computational model.  

3.1 Code Verification 

  Fig. 1 shows a comparison between numerical result and 

the analytical result obtained from [12] for the steady state case 

considering the Eq. (3-6). The comparison shows a better 

agreement. The boundary conditions are defined as describe in 

Eq. (3) and Eq. (4). 

 

Fig. 1 Comparison with analytical solution. 

This figure shows that initially, tissue temperature 

increases along with distance due to metabolism, but after 

attaining the highest value, it decreases towards the body core 

as temperature boundary condition is applied to the body core. 

Here the maximum temperature is 450C, which located about 

11 mm below the skin surface.  

3.2 Spatial Heating 

Laser and microwave therapy are some of the most widely 

used non-invasive techniques to destroy malignant cells. In this 

section, we aim to know the temperature distribution of human 

tissue during heating by laser or microwave.  

In case of heating by laser and microwave, the heat 

absorption rate can simply be approximated by Beers Law, 

which can be expressed as 𝑄𝑟 = 𝜂𝑃0(𝑡)𝑒−𝜂𝑥   in which heat 

flux decays exponentially with respect to distance from the skin 

surface [13]-[15]. Here Po(t) is the time-dependent heating 

power on the skin surface, and η is the scattering coefficient. 

Since P0(t) and η vary from one apparatus to another, so it is 

important to know the influence of these parameters on tissue 

temperature. Po(t) can be either constant and time-dependent. 

In our study, we have considered both cases. 

 

(a) 

 

(b) 

Fig. 2 Temperature distribution at different times; (η= 200 m-1 

, (a)Po(t)=250 W/m2, (b) Po(t)=250+200cos(0.02t) W/m2). 

Fig. 2 depicts the transient temperature at different times 

when tissues subject to two different spatial heating. Fig. 2 (a) 

shows the case of constant spatial heating and while Fig. 2 (b) 

is for sinusoidal spatial heating. In both cases, at the early stage, 

the tissue temperature increases along with the distance from 

the skin surface due to external heating, but later it decreases 

towards the body core. Moreover, there is an inter-cross 
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between temperature curves at different times in Fig. 2 (b), 

which indicates the oscillation of the temperature inside the 

tissue due to sinusoidal spatial heating. These figures also 

reveal that the temperature within the tissue increases along 

with time and finally reached the steady state condition. Here 

the maximum temperature is about 470C, and that lies 7 mm 

below the skin surface. 

3.3 Effect of Scattering Co-efficient 

Fig. 3 shows the effect of the scattering coefficient, where 

Fig. 3 (a) shows the result for constant heating, and Fig. 3 (b) 

depicts the result for sinusoidal heating. In both cases, the 

larger coefficient results in a higher temperature. Moreover, in 

the case of sinusoidal spatial heating, the larger coefficient 

returns higher amplitude. Fig. 3 (b) indicates the sinusoidal 

effect. Fig. 3 (a) shows that after about 3000 seconds 

(approximately), tissue temperature begins to stabilize.  

 

(a) 

 

(b) 

Fig. 3 Effect of scattering coefficient on temperature response 

at skin surface (f (t) =0); (a) Po (t) =250 W/m2; (b) Po (t) 

=250+200cos (0.02t) W/m2. 

3.4 Surface Heating 

Heating with a hot plate or pad is a traditional approach to 

retain from pain. Depending upon the temperature and thermal 

properties of heating disk, this approach can be used for cell 

repair or to destroy affected cells. In this section, we analysed 

the thermal behaviour of living tissue subjected to time-

dependent surface heat flux. Both constant and step heating are 

considered in this study. In constant heating, human tissue is 

heated with a heating pad at a constant rate. In step heating after 

heating for a certain period heat source is removed and allows 

it to cool. Results are calculated at different heat flux and time. 

Here Eq. 3(a) is used for skin surface boundary conditions.  

Constant Heating: The calculated tissue temperature for 

constant surface heating is shown in Fig. 4 (a) at different heat 

flux. And skin temperature at different times, along with the 

distance from the skin surface, is shown in Fig. 4 (b). From Fig. 

4 (a) higher heat flux results in a higher temperature, and 

temperature increases as time increases. At the early stage, 

temperature increases rapidly, but as time increases, increasing 

rate decreases and tends to be stabilized. From Fig. 4 (b) it is 

clear that temperature decreases towards the body core.  

 

(a) 

 

(b) 

Fig. 4 Effect of surface heat flux to the skin surface 

temperature response. 
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Step Heating: In this case, after heating for 1200 seconds 

the heat source is removed. In this section, temperature 

distribution at three different locations is obtained over time. It 

is very useful in eye surgery via a single laser pulse due to a 

flash fire, heating using a hot plate for a short period of time 

[10]. The heating power used in this particular type of 

investigation is expressed as 

Q(t)= {
1000 

w

m2
, t ≤ 1200 s

0
w

m2
, t > 1200 s

                                                    (13) 

The transient temperature at three different locations of the 

skin is shown in Fig. 5. Where Qr=0, in Fig. 5. The result also 

carried out for two different value of blood perfusion 

ωb=0.0005 ml/s/ml and ωb=0.004 ml/s/ml. 

 

(a) 

 
(b) 

Fig. 5 Transient temperature at three positions (Qr=0); (a) 

ωb=0.0005 ml/s/ml; (b) ωb=0.004 ml/s/ml. 

Both figures show that as time increases, temperature also 

increases, but after 1200 seconds when the heat source is 

removed, tissue temperature decreases as time passes. 

Moreover, these figures show us the effect of blood perfusion 

in surface heating. Also the higher blood perfusion results in 

lower temperature and quick temperature loss (after 1200 

seconds when Q(t)=0). This happens as a higher blood flow rate 

carried away excess heat. Such information is valuable in 

thermal comfort analysis. In practice, the temperature of the 

surrounding fluid temperature and duration should be in the 

safe range. A high temperature or long durable process may 

encounter pain, even burning of the skin. 

3.5 Effect of Heating Frequency and Blood Perfusion 

The calculated result for different heating frequency and 

blood perfusion is shown in Fig. 6 subjected to sinusoidal 

surface heating. The sinusoidal heating at the skin surface can 

be expressed as  

Q(t)=q0+qw cos(ω1t)                                                               (14) 

Where q0 and qw are the constant terms, and the oscillation 

amplitude of sinusoidal heat flux and ω1 represents the heating 

frequency. 

 

Fig. 6 Effect of heating frequency and blood perfusion on 

sinusoidal surface heat flux. 

 

Fig. 7 Different heating condition and its impact on skin 

surface temperature. 
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In Fig. 6 curves A and B, we use blood perfusion as 

0.0005, where in curve C & D it is 0.004. While in curve A and 

C, we use a heating frequency of value, 0.02 were in B & D, it 

is 0.01. From these figures, we can say that high blood 

perfusion results in lower temperatures where temperature 

response under two different heating frequencies almost 

negligible. 

The calculated tissue temperature result subject to 

simultaneously surface and spatial heating is shown in Curve A 

of Fig. 7. While Curve B represents a single sinusoidal surface 

heating (Qr=0), and curve C represents only sinusoidal spatial 

heating (f1(t)=0). The applied surface and spatial heating are 

Q(t)=1000+500cos(0.02t) W/m2 and Po(t)=250+200cos(0.02t).  

However, Fig. 8 illustrates the impact of frequencies of 

surface heating. Here the applied surface and spatial heating are 

Q(t)=1000+500cos(0.02t) W/m2 and Po(t)=250+200cos(0.01t) 

respectively. In curve A, we applied simultaneously sinusoidal 

surface and spatial heating. Curve B represents a single 

sinusoidal surface heating (Qr=0) when curve C represents only 

spatial heating (f1(t)=0). 

 

Fig. 8 Temperature distribution at different heating frequency. 

In curve A of Fig. 8, the frequency of surface heating and 

spatial heating was the same, and thus, due to the same 

frequency, the resultant temperature appears having the same 

frequency as external heating. However, in curve A of Fig. 8, 

different heating frequency was applied to spatial and surface 

heating; that's why irregular frequency has appeared in tissue 

temperature. 

3.6 Impact Forced Convection Boundary Condition 

In this section, we concentrate on temperature profiles 

under different kinds of surrounding medium classified by their 

temperature. Fig. 9 depicts the tissue temperature distribution 

under different cooling medium temperature. Here force 

cooling significantly reduces the skin surface temperature. 

Moreover, lower cooling medium temperature results in lower 

skin surface temperature. However, the effect of forced cooling 

is negligible for the deep tissues, as shown in Fig. 9, the 

temperature of the cells over approximately x=12 mm line 

remains changeless for different cooling temperature. 

 

Fig. 9 Influence of cooling medium temperature on tissue 

temperature. 

Using a cooling medium on the skin surface may be a good 

approach during hyperthermia treatment as it can reduce the 

skin temperature even below the core temperature, which may 

result in hypothermia. Hence, concentration should be given 

selecting proper cooling medium. Here the force convection 

coefficient of the cooling medium is considered as 100 W/(m2. 
0C). 

3.7 Point Heating 

Treating deep tumors- located at kidney, lung, or rectum-

it is very difficult to adopt surgical treatment. In such a case, 

point heating can be an alternative to surgery due to its ability 

to treat a tumor with a defined volume.  In such a case, the total 

heating power is deposited at the tumor site with the help of a 

microwave probe, radio-frequency probe etc. In this heating 

type, the target region is heated more than 50oC within few 

minutes. This heating is very beneficial in the case of thermal 

ablation when a target tissue is destroyed, injecting thermal 

energy at the tumor site [5],[6]. There is an inverse relationship 

between elevated temperature and exposure duration. For the 

same amount of tissue necrosis, the high temperature needs low 

exposure duration. On the contrary, the low temperature needs 

high exposure duration. So for effective treatment, we need to 

know the required temperature and exposure duration 

precisely. Moreover, in some cases, to protect the skin surface 

cells from excess heat, the cooling medium is used on the skin 

surface during treatment, which is a very efficient approach to 

reduce the skin surface temperature. In this investigation, we 

calculate the tissue temperature at different times, cooling 

medium properties, and heating power. To deposit total heating 

power at the desired site, we use the expression of the external 

heating as [12],[13].  

Qr(x,t)=P1(t)δ(x-x0)                                                                (15) 
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Where P1(t) is the point, heating power, and δ(x-x0) is the 

Dirac delta function. It has a value 1 at our desired point (x0), 

and at all other points, its value is 0. That’s why it allows 

depositing total heating power at the tumor site. Where x0 is the 

distance of tumor site from the skin surface. Here we consider 

the distance of the tumor site from the skin surface is 21 mm 

(x0). In this case, convection boundary condition is applied 

(hf=100 W/(m2.0C) and Tf=15 oC) at the skin surface. 

 

Fig. 10 Impact of point heating on tissue temperature 

distribution. 

In Fig. 10, temperature distribution at different times is 

shown where point heating with a point heat source of 

P1(t)=2500 W/m2 is applied. This figure demonstrates that due 

to point heat source, the position of the maximum temperature 

remains constant at the site of the point source at different 

times. 

 

Fig. 11 Influence of cooling medium temperature to steady 

state temperature distribution. 

In Fig. 11 the temperature response under different 

temperatures of cooling fluid is analysed where in Fig. 12 

influence of tissue temperature under different heating power 

is shown. Both results are computed for the steady state 

condition. In Fig. 11, point source of P1(t)=2500 W/m2 is used. 

Fig. 11 shows that the magnitude and position of the highest 

steady state temperature are changeless at different cooling 

medium temperature. It reduces skin surface temperature 

considerably. 

From Fig. 12 it is clear that higher power of the point heat 

leads to a higher temperature. Moreover, tissue temperature 

sensitivity due to point heating power decreases along with the 

distance from point heat source. 

 

Fig. 12 Impact of point heating power on steady state 

temperature distribution. 

3.8 Tissue Temperature Fluctuation under Stochastic Cooling 

Medium Temperature 

Earlier, we consider the surrounding fluid temperature as 

constant. However, practically surrounding fluid temperature 

does not remain constant; rather, it fluctuates over time. So it is 

necessary to know the impact of such stochastic behavior. For 

this purpose, we use the following expression for flowing 

medium temperature. 

Te=Tf+ε(t)                                                                              (16) 

Where ε(t) the stochastic variance in Te and Tf is the 

equilibrium value if the environmental temperature. This 

variance gives the environmental temperature a stochastic 

value. We assume  

εt=λt(0.05-σi)                                                                          (17) 

Where ε and t   is the stochastic variance in environmental 

temperature and the discrete-time, respectively; σi is the 

random number between 0 and 1. 

Fig. 13 and Fig. 14 depict the influences of variance in 

environmental temperature with different convection 

coefficient between the cooling medium and skin surface. Fig. 
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13 (a) and Fig. 14 (a) shows the tissue temperature fluctuation 

over time where Fig. 13 (b) and Fig. 14 (b) shows the 

fluctuation of stochastic variance. These figures demonstrate 

that due to irregular cooling medium temperature, the tissue 

temperature fluctuates within a certain range. Moreover, the 

frequency of the tissue temperature is much smaller than that 

of the stochastic variance. It may be noticed that as convection 

coefficient gets larger the temperature fluctuation magnitude 

also increases slightly. 

 

(a) 

 

(b) 

Fig. 13 Impact of stochastic temperature variance on tissue 

temperature (hf=100 Wm-2). 

3.9 Tissue Temperature Fluctuation Due to Stochastic Heating 

In this section, we will analyze about stochastic heating, 

which may be encountered for biological rhythm or stochastic 

external heating in hyperthermia treatment. This case 

corresponds to the spatial heating of the following type. 

Qr=Q'm(t)                                                                                (18) 

Where Q'm(t) is the stochastic variance in metabolic rate, and in 

the initial state, the metabolic rate was considered as constant 

QM. Here we assumed that  

Q'm(t)=λq(0.5-σi)                                                                    (19) 

 

(a) 

 

(b) 

Fig. 14 Impact of stochastic temperature variance on tissue 

temperature (hf=25 Wm-2). 

Where Q'm and t   is the stochastic variance in metabolic 

heat generation and the discrete-time respectively; σi the 

random number between 0 and 1 and t is the discrete stochastic 

variance in environmental temperature. And λq   is a constant, 

which was regarded as Qm/10 in this study. 

The calculated results are shown in Fig. 15 which indicates 

that due to stochastic heating the temperature fluctuates within 

a small range ±0.1 . Fig. 15 (a) shows the tissue temperature 

fluctuation over time where Fig. 15 (b) shows the fluctuation 

of stochastic variance. Section 4.8 and Section 4.9 clearly 

indicates that the biological body, tends to keep its temperature 

balance. 
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(a) 

 

(b) 

Fig. 15 Influence of variance in metabolic rate on tissue 

temperature. 

4. Summary 

In this paper, a one dimensional Finite Element Model was 

developed to know the temperature profile inside the human 

tissue subject to numerous heating pattern i.e., spatial heating, 

surface heating, point heating, and stochastic heating. Effect of 

heating frequency, blood perfusion, and scattering coefficient 

are also discussed briefly. Which can be used in parameter 

estimation. It is found that for destroying a target cell point, 

heating is more suitable than other heating as it increases the 

temperature of the target region, and it has a relatively low 

impact on nearby unaffected cells. Moreover, a higher 

scattering coefficient leads to a higher temperature, where 

higher blood perfusion leads to lower temperate. As heating 

apparatus such as laser or microwave may have different power 

and scattering coefficient. The results obtained in this paper can 

be used to select a suitable apparatus. During treatment, 

fluctuation of environmental fluid temperature may be out of 

consideration as its impact on tissue temperature is almost 

negligible, as shown in stochastic heating. The different heating 

styles used for investigation in this study are generally carried 

out in clinical trials. Hence results described in this paper could 

be beneficial to predict the treatment outcome before the 

treatment. This will help to detect the possible risk as well as 

increasing the effectiveness of the treatment. Moreover, the 

developed Finite Element Model and computer code can be 

further use to solve more practical bio-heat transfer problems. 
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