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ABSTRACT   

Quartic non-polynomial spline method is presented to solve the singularly perturbed differential-difference equation containing 

two parameters. The considered equation is transformed into an asymptotical equivalent differential equation, and the derivatives are 

replaced finite difference approximation using the quartic non-polynomial spline method. The convergence analysis of the method has 

been established. Numerical experimentation is carried out on model examples, and the results are presented both in tables and graphs. 

Furthermore, the present method gives a more accurate solution than some existing methods reported in the literature. 
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1 Introduction  

Numerical analysis is both a science and an art. As a science, 

it is concerned with the processes by which mathematical 

problems can be solved by appropriate methods. While, as an art 

numerical analysis is concerned with choosing that procedure 

that is suitable for the solution of a particular problem. Numerical 

answers to a problem generally cover errors that arise in inherent 

in the mathematical formulation of the problem or approximate 

to the physical situation and suffered in finding the solution 

numerically. If the small positive constant number multiples with 

the highest-order derivative of a given differential equation, then 

the obtained equation is known as a singularly perturbed 

differential equation. The small positive parameter is known as 

the perturbation parameter. In singular perturbation theory, the 

study of differential equations which are modified by the 

addition of small coefficients multiplying the higher-order 

derivative is of importance in many fields, [1]-[5]. 

Singular perturbation problems are the differential or 

difference equations that arise as a result of the modeling of real-

life phenomena and whose solutions exhibit the boundary layer.  

Based on the parameters, the perturbation and/or delay 

parameters they involved, singularly perturbed problems can be 

categorized into the singularly perturbed differential equations or 

singularly perturbed differential-difference equations. Many 

researchers, like in, [7]-[16] have been providing different 

numerical methods for solving singularly perturbed differential-

difference equations. But, most of those author’s considered the 

stated problem when it involves one perturbation parameter.  

Few scholars like in [9],[14],[17] have been developed numerical 

schemes to solve singularly perturbed problems with two 

parameters.  For the problems that contain two perturbation 

parameters and involve delay term in the convection term 

proposed by Sahu and Mohapatra, [9] who tried to develop a 

parameter uniform numerical method.  

However, this developed method and most of the classical 

methods produce good results only when the perturbation 

parameter in the convection term   is much less than the 

perturbation parameter in the diffusion coefficient , (i.e., 

  ). This difficulty is caused due to   in convection term 

which implies the existence of the two boundary layers in the 

solution.   Moreover, classical numerical methods give good 

accurate solutions only when the step length the solution domain

h .  This leads to huge systems of equations which is costly 

to solve. Thus, in this paper, we present a quartic non-polynomial 

spline method that produces a more accurate solution for 

singularly perturbed differential-difference equations involving 

two parameters when h   .  

2 Description of the Numerical Method 

We consider the singularly perturbed differential-difference 

equation with two parameters of the form: 

( ) ( ) ( ) ( ) ( ) ( )y x a x y x b x y x g x       , 

(0,1)x  
(1) 

with the interval and boundary condition: 

( ) ( )y x x , 0x   , (1) .y   (2) 

where 0 , 1     are the perturbation parameters. 

The delay parameter is , and satisfies .   Functions 

( ), ( ), ( )a x b x g x and ( )x are continuous on  , and the 

constant number   is given. Furthermore, assume that 

( ) 0a x a   and ( ) 0,b x b x    .  

By Taylor’s series expansion as: 

2( ) ( ) ( ) ( )y x y x y x O         (3) 

Substituting Eq. (3) into Eq. (1), gives the asymptotical 

equivalent boundary value problem: 

( ) ( ) ( ) ( ) ( ) ( )y x p x y x q x y x f x      (4) 

with the boundary conditions, 
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0 0(0) ( ), (1)y x y A     (5) 

where:  
( ) ( )

( ) , ( ) ,
( ) ( )

a x b x
p x q x

a x a x

 

   
 

 
and 

( )
( )

( )

g x
f x

a x



 



 . 

Consider for 0 10 ( )p p x p    and ( ) 0q x q  , the 

homogenous part of Eq. (4) is written as; 

1( ) ( ) ( ) 0y x p y x qy x      (6) 

The characteristic equation of Eq. (6) is
2

1 0m p m q    , and assume it has two real solution 

 
2

1 1

1,2

4

2

p p q
m

  



  
  . 

The situation of the layer is characterized by the case, for
  , as 0   , and 0q   which suggests that

1
1 2and 0

p
m m






  . Hence, in this case for  , 

the complementary solution to Eq. (6) is 

1

1 2( ) ,

p
x

y x C C e







   
(7) 

where 
1 2andC C  are arbitrary constants.   

Let N  be a positive integer and a uniform mesh   with 

nodal point ix   on  0,1  such that: 

0 1 2 1: 0 ... 1N Nx x x x x        , 

, 0,1,2,...,ix ih i N  ; where  
1

h
N

  ,  and N  is the 

number of intervals. For each segment

 1, , 1, 2,..., 1i ix x i N   , let us the non-polynomial 

quartic spline ( )S x defined by:  

𝑆∆(𝑥) = 𝑎𝑖 𝑠𝑖𝑛 𝑘(𝑥 − 𝑥𝑖) + 𝑏𝑖 𝑐𝑜𝑠 𝑘(𝑥 −
𝑥𝑖) + 𝑐𝑖(𝑥 − 𝑥𝑖)

2 + 𝑑𝑖(𝑥 − 𝑥𝑖) + 𝑒𝑖, 
(8) 

where , , ,i i i ia b c d  and ie  are real finite constants to be 

determined and k  is an arbitrary parameter that will be used to 

increase the accuracy of the method.  Denoting iy be an 

approximation to ( )iy x  obtained by the segments ( )S x  of the 

spline function passing through the points ( , )ix S  and

1 1( , )ix S  . To determine the coefficients of Eq. (8), we do not 

only require that ( )S x  satisfies interpolator conditions at ix  

and 1ix   but also continuity condition of the first, and the third 

derivatives at the nodes ( , )ix S and 1 1( , )ix S  . Symbolizing: 

 

1 1

1 1

(4)

1

( ) , ( )

( ) , ( )

1
( )

2

i i i i

i i i i

i i i

S x y S x y

S x M S x M

S x F F

   

   

 

 

  

 

 (9) 

We get through a long straightforward calculation,  

   

   

 

1 12 4

1

4

1

2

1 1 12 2 2

14

1 1 cos
,

sin 2 sin

,
2

,
2 4

1 1 1
,

2 4

1
.

2

i i i i i

i i
i

i i i
i

i i i i i i i

i i i i

a M M F F
k k

F F
b

k

M F F
c

k

h h
d y y M M F F

h hk hk k

e y F F
k



 
 





  




   





 

 
       

 

  
 

Expending the continuity condition of the first derivatives at 

knots,  1( ) ( )i iS x S x 
  , leads to: 

 

 

 

3

1 1

2

2 2

1 1 1

2 2

1

24 sin

2(1 cos ) sin

2 2 cos sin 2sin
( ) 2

[2(1 cos ) sin ]

2 4sin sin 2 ( s 1)

[2(1 cos ) sin ]

4 sin
.

[2(1 cos ) sin ]

i i i

i i i i

i

i

y y yhk

hk h

k hk h k
F F F M

h hk

k h k hk co
M

h hk

k hk
M

h hk



 

  

 

  

 



 

 

  



  
    

 
   

 

  


 



 

 

(10) 

Likewise, using the continuity of the third derivatives at 

knots, 1( ) ( )i iS x S x 
  , we get: 

2 2 2

1 1 1 1

2 cos 2 (cos 1) 2
( ) 2

1 cos 1 cos 1 cos
i i i i i i

k k k
F F F M M M

 

  
   


    

    
(11) 

By substituting Eq. (11) into (10), we get the system: 

1 1
1 12

2
( ) 2 ,i i i

i i i

y y y
M M M

h
  

 

 
    (12) 

where, 1,2,..., 1i N  , 

2 2

2 2

2(1 s ) 4(1 s ) (1 3 s )
and .

2 (1 s ) 4 (1 s )

co co co

co co

    
 

   

    
 

 
  

If 0h , then 0hk   . Thus using L’Hospital’s 

rule we have 
0

1
lim

12



 and

0

5
lim

12




 . 

Using the splines second derivatives in Eqs. (9) with (4), we 

have  

 

 

 

1 1 1 1 1 1

1 1 1 1 1 1

1
,

1
,

1
.

i i i i i i

i i i i i i

i i i i i i

M f p y q y

M f p y q y

M f p y q y










     

     

  

  

  

 (13) 

For the first-order derivatives in Eq. (13), we consider the 

central finite difference approximation of the form:  
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1 1 ,
2

i i
i

y y
y

h

 
   1 1

1

3 4
,

2

i i i
i

y y y
y

h

 


  
 

1 1
1

4 3

2

i i i
i

y y y
y

h

 


 
  . 

Using this approximation and substituting Eq. (13) into (12) 

yields: 

 

 

   

1 1 1 12

1 12

1 1 1 1 1 12

2 3
2

2 2
2

3 2 2 .
2

i i i i i

i i i i

i i i i i i i i

p p p q y
h h

p p q y
h h

p p p q y f f f
h h

 
   

 
  

 
     

   

 

     

 
    

 

 
    
 

 
        
 

 

(14) 

To control the disturbance perturbation parameter in the 

solution, we introduce the fitting parameter   on Eq. (14). In 

order to get the value of  , multiply  Eq. (14) by 
h


, denote 

,
h




   and then evaluate limits as 0h  gives: 

 

 

1 1 1
0

1 1
0

( ) lim

lim 2

i i
h

i i i
h

p y y

y y y

  


 


 


 


 
 (15) 

From the discrete form of Eq. (7) we have 

1

1

1 1 1

1 1 1

1 2 1 2

( 1)

1 1 2 1 2

( 1)

1 1 2 1 2

.

.

i

p
x

p i

i

p i p i p

i

p i p i p

i

y C C e C C e

y C C e C C e e

y C C e C C e e




  

  





   



  



   

   

   

 (16) 

Considering Eq. (16) into Eq. (15), we get:  

  
1 1coth

2 2

p p 


 
  

 
. 

Hence, the fitted form of Eq. (14) is 

1 1 ,i i i i i i iE y F y G y H     (17) 

where 

 

 

 

 

 

1 1 12

1 12

1 1 12

1 1

2 3 ,
2

2 2
2 ,

3 2 ,
2

2 .

i i i i i

i i i i

i i i i i

i i i i

E p p p q
h h

F p p q
h h

G p p p q
h h

H f f f

 
   

 
  

 
   

 

  

 

  

 

    

   

    

  

 

3 Error Analysis  

Let expand the terms 1iy   and 1iM   in Eq. (12), using 

Taylor’s series which gives the local truncation error ( )iT h : 

  2 (4) 4 (6)1 1
( ) 1 2( ) ...

12 360 12
i i i iT h y h y h y


  

             
   

 
(18) 

But from the values of 
1

12
  and 

5

12
  ,  Eq. (18) 

leads to  

4( )iT h Ch  (19) 

where, (6)1

240
iC y . 

Thus, we have 

4( ) ( )i Ny x Y C h   (20) 

where ( )iy x  and 
NY  are exact and approximate solutions 

respectively, and C  is constant independent h . 

To apply the Richardson extrapolation technique, let 
2 N  

obtained from each mesh interval 
N  by dividing two, then 

denote the approximation of the solution on 
2 N  by

2NY . 

Consider Eq. (20) works for any 0h  , which implies: 

4( ) ( ) ,N N

i N iy x Y C h R x     (21) 

So that it also works for any 0
2

h
 and results: 

4

2 2

2( ) ,
2

N N

i N i

h
y x Y C R x

  
        

 (22) 

where the terms, 
NR  and 

2NR   are of  𝑂(ℎ6). 

Eliminating the constant C, and a combination of Eqs. (21) and 

(22) leads to   6

215 ( ) 16 ( )i N Ny x Y Y O h   , which 

proposes to denote:  

   2

1
16

15

ext

N N NY Y Y   (23) 

is also another approximation solution of ( )iy x which 

obtained from the solutions of 
NY  ad 2NY . This approximation 

solution with the truncation error, 

  6( ) ( )
ext

i Ny x Y C h   (24) 

Thus, the formulated quartic non-polynomial spline method 

in Eqs. (17) and extended to Eq. (23) with local truncation error 

in Eqs. (19) and (24) respectively, satisfies the consistency of the 

method if: 

 4 6

0 0 0
lim ( ) lim lim 0i
h h h

T h Ch Ch
  

   . 

4 Stability of the Method 

Let multiply both sides of the developed scheme in Eq. (17) 

by 2h  and consider the values of
iE , 

iF  and 
iG for sufficiently 

small h , then we get: 

i iE G   , 2iF   (25) 

Since, 1,2,..., 1i N  , considering  Eq. (25),  the matrix 

form of Eq. (17) is 

AY B , (26) 

where, 
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2 0 0

2 0

0 2

0

0 2

0 0 0 2

A

 

  

  

  

 

 
 

 
 

  
 
 
 

 

, 

1

2

2

1

N

N

y

y

Y

y

y





 
 
 
 

  
 
 
 
  

 and 

2

1 1 0

2

2

2

2

2

1 1

N

N N N

h H E y

h H

B

h H

h H G y



 

 
 
 
 

  
 
 
 

  

. 

Here, the matrix A is a tri-diagonal, irreducible, and 

diagonally dominant. Therefore, the system can be solved by 

Thomas Algorithm. 

As discussed in the literature [16, 18] the eigenvalues of a 

tri-diagonal matrix A  are given by: 

 

   2 2 cos , 1(1) 1s

s
s N

N


        . 

 Hence, the eigenvalues of the matrix A in Eq. (26) are: 

 
2

2 2 cos 2 1 cos , 1(1) 1s

s s
s N

N N

 
   

 
        

 
. 

But from trigonometric identity, we have

21 cos 2sin
2

s s

N N

 
  . Thus, the eigenvalues of A   

 

2 22 2sin 4 sin 4
2 2

s

s s

N N

 
   

 
      

 
. 

A developed method is stable if A  is non-singular and 

 1
00A C h h     . 

where, C  and 0h  are two constants that are free of h . 

Since A is real and symmetric it follows that 1A is also.  

So that, its eigenvalues are given by
1

s
. The stability condition 

of the method will be satisfied when 

1 1 1 1

4 4s

A C
  

 
    . 

Thus, the developed quartic non-polynomial spline method 

is consistent and stable. Therefore, the proposed method is 

convergent. 

5 Numerical Illustrations 

In this section, we consider model examples of the 

singularly perturbed differential-difference equations with two 

parameters to validate our theoretical descriptions. Maximum 

absolute errors are computed by the formula: 

 2max 1(1) 1
h

h

h i i
i

Z y y i N    , 

where 
h

iy  is the numerical solution at the nodal point ix  

on the mesh interval of 
N  and 2

h

iy  is the numerical solution 

at the nodal point ix on the mesh interval of  
2 N . 

Example 1: Consider the singularly perturbed differential-

difference problem 

( ) (1 ) ( ) ( ) 0, (0,1)

( ) 1, 0, (1) 1.

xy x x y x e y x x

y x x y

  



       


    
The exact solution is not available, so we calculate the maximum 

absolute errors by the double mesh principle. For computational 

purposes, we consider 1210   for both examples.  

Example 2: Consider the singularly perturbed differential-

difference problem  

( ) ( ) ( ) , (0,1)

( ) 1, 0, (1) 0.

y x y x y x x x

y x x y

       


    
    

The analytic solution of this problem is given by: 

                 
    

 

1 2 1 1 2 1 2 1 1 1

1 1 2 1

2 2 2 2

2 2

1 1
( )

k k x k x k k x k x

k k

e e e e
y x x

e e

   

 

 


     

 

    
  



  

with   2
1 1,2 1and 4k           

  

Table 1 Comparison of maximum absolute errors for Example 1, when 310   

   N 32 64 128 256 512 1024 

Present Method      
210  6.5542e-05 1.6398e-05 4.0996e-06 1.0249e-06 2.5634e-07 6.4086e-08 

410  7.9774e-06 5.2550e-06 1.4139e-06 3.6245e-07 9.0642e-08 2.2661e-08 

810  1.4789e-05 4.2908e-07 7.5055e-09 8.8815e-11 7.2546e-12 2.0887e-12 

1010  1.4791e-05 4.2964e-07 7.6475e-09 1.2503e-10 1.9034e-12 7.1987e-13 

Results in [9]     
210  7.074e–03  1.945e–03  5.018e–04  1.271e–04  3.184e–05  7.968e–06 

410  1.045e–02  2.830e–03  7.229e–04  1.817e–04  4.549e–05  1.137e–05 

810  1.047e–02  2.835e–03  7.242e–04  1.820e–04  4.557e–05  1.139e–05 

1010  1.047e–02  2.835e–03  7.242e–04  1.820e–04  4.557e–05  1.139e–05 
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Table 2 Comparison of maximum absolute errors for Example 1, when 410   

   N 32 64 128 256 512 1024 

Present Method      
210  6.9549e-07 1.8398e-07 4.6162e-08 1.1543e-08 2.8867e-09 7.2070e-10 

410  7.4475e-04 4.0798e-05 2.7815e-05 7.5115e-06 1.8890e-06 4.7538e-07 

810  1.3837e-03 5.9743e-05 3.9377e-05 1.0955e-05 2.8532e-06 7.1372e-07 

1010  1.3837e-03 5.9743e-05 3.9377e-05 1.0955e-05 2.8532e-06 7.1372e-07 

Results in [9]     
210  1.252e–03  3.162e–04  7.946e–05  1.987e–05  4.970e–06  1.242e–06 

410  2.470e–02  1.301e–02  4.656e–03  1.624e–03  4.396e–04  1.102e–04 

810  2.123e–02  8.699e–03  3.120e–03  1.052e–03  3.347e–04  1.038e–04 

1010  2.121e–02  7.835e–03  2.704e–03  8.976e–04  2.797e–04  8.430e–04 

Table 3 Maximum absolute errors before and after applying the Richardson extrapolation for Example 1, when 310     

   N  32 64 128 256 512 1024 

After        
410  1.8079e-04 5.4565e-05 1.3834e-05 3.5207e-06 8.8021e-07 2.2005e-07 

610  1.8079e-04 5.4565e-05 1.3834e-05 3.5207e-06 8.8021e-07 2.2005e-07 

810  1.8079e-04 5.4565e-05 1.3834e-05 3.5207e-06 8.8021e-07 2.2005e-07 

1010  1.8080e-04 5.4567e-05 1.3834e-05 3.5208e-06 8.8024e-07 2.2006e-07 

Before       
410  3.2137e-03 1.3165e-04 4.9202e-05 1.6322e-05 4.3208e-06 1.0952e-06 

610  3.2137e-03 1.3165e-04 4.9202e-05 1.6322e-05 4.3208e-06 1.0952e-06 

810  3.2137e-03 1.3165e-04 4.9202e-05 1.6322e-05 4.3208e-06 1.0952e-06 

1010  3.2138e-03 1.3165e-04 4.9203e-05 1.6322e-05 4.3209e-06 1.0953e-06 

Table 4 Maximum absolute errors with fitting (W. F) and without fitting (W.O. F) parameter for Example 1, when 310     

   N  32 64 128 256 512 1024 

W. F       
410  1.8079e-04 5.4565e-05 1.3834e-05 3.5207e-06 8.8021e-07 2.2005e-07 

610  1.8079e-04 5.4565e-05 1.3834e-05 3.5207e-06 8.8021e-07 2.2005e-07 

810  1.8079e-04 5.4565e-05 1.3834e-05 3.5207e-06 8.8021e-07 2.2005e-07 

1010  1.8080e-04 5.4567e-05 1.3834e-05 3.5208e-06 8.8024e-07 2.2006e-07 

W.O. F       
410  1.3710e-03 8.5454e-04 3.9479e-04 1.0020e-04 2.5467e-05 6.3837e-06 

610  2.6758e-02 3.3937e-02 3.5052e-02 1.2619e-02 5.9584e-03 4.4740e-03 

810  2.8268e-02 4.0314e-02 6.1232e-02 8.5222e-02 1.3035e-01 2.5806e-01 

1010  2.8283e-02 4.0349e-02 6.0781e-02 7.6575e-02 7.4437e-02 8.2861e-02 

Table 5 Comparison of maximum absolute errors for Example 2, when 310   

   
N 32 64 128 256 512 1024 

Present Method      

210  9.2960e-04 2.3290e-04 5.8941e-05 1.4738e-05 3.6893e-06 3.6893e-06 

510  2.0555e-06 2.5750e-07 5.9506e-08 1.4797e-08 3.6979e-09 9.2472e-10 

710  1.1198e-06 2.3221e-08 9.3234e-10 1.5330e-10 3.7066e-11 9.4675e-12 

1010  1.1103e-06 2.0857e-08 3.4127e-10 5.5301e-12 1.4166e-13 3.9091e-13 

Results in [9]     
210  1.470e–02  3.909e–03  1.005e–03  2.525e–04  6.327e–05  1.582e–05 

510  1.071e–02  3.666e–03  9.318e–04  2.339e–04  5.854e–05  1.464e–05 

710  1.066e–02  3.660e–03  9.303e–04  2.335e–04  5.844e–05  1.461e–05 

1010  1.066e–02  3.660e–03  9.303e–04  2.335e–04  5.844e–05  1.461e–05 
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Table 6 Comparison of maximum absolute errors for Example 2, when 310  . 

   
N  32 64 128 256 512 1024 

After       
410  1.0592e-05 2.3946e-06 5.9382e-07 1.4838e-07 3.7093e-08 9.2732e-09 

610  1.2048e-06 4.4520e-08 6.2575e-09 1.4846e-09 3.6988e-10 9.2715e-11 

810  1.1113e-06 2.1091e-08 3.9984e-10 2.0174e-11 3.7818e-12 1.1909e-12 

1010  1.1103e-06 2.0857e-08 3.4127e-10 5.5301e-12 1.4166e-13 3.9091e-13 

Before       
410  7.5786e-04 5.7296e-05 5.8259e-06 9.2083e-07 1.9666e-07 4.7066e-08 

610  7.0795e-04 4.5377e-05 2.8778e-06 1.8573e-07 1.3000e-08 1.1592e-09 

810  7.0746e-04 4.5258e-05 2.8484e-06 1.7840e-07 1.1169e-08 7.0160e-10 

1010  7.0745e-04 4.5257e-05 2.8481e-06 1.7833e-07 1.1151e-08 6.9702e-10 

 

Fig. 1 Solution profiles for Example 1, when 
410 ,   

1210   and 64N  .  

 

Fig. 2  Obtained maximum absolute errors when 410  and

310   

 

Fig. 3 Solution profiles for Example 2, when 
410 ,   

1210   and 64N  .  

6 Discussion and Conclusion  

In this paper, we presented a quartic non-polynomial spline 

method to solve the singularly perturbed differential-difference 

equation involving two parameters. First, this equation is 

transformed into an asymptotically equivalent differential 

equation, and then applying a quartic non-polynomial spline 

method.  Convergence of the method has been established. To 

validate the method, numerical illustrations have been given in   

Table 1-6 and Fig. 1-3. 

These results show, the present method gives a more 

accurate solution than some existing methods in the literature.  

Also, maximum absolute errors decrease as the number of mesh 

points N  increases which implies convergence of the method.  

Moreover, we attempted to increase the order of convergence by 

Richardson’s extrapolation and discovered that this well-known 

convergence acceleration technique has some limitations. We 

observe that even though this extrapolation technique improves 

the accuracy slightly, it does not increase the rate of convergence.  

Generally, a quartic non-polynomial spline method is 

convergent and gives an accurate numerical solution for solving 

singularly perturbed differential-difference problems involving 

two parameters. 
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