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ABSTRACT   

This study investigates the performance of tall buildings using tuned mass damper (TMD) under dynamic loads such as harmonic 

loads, and the Loma Prieta Earthquake 1989 data. The numerical investigations are performed by considering a sixteen-storied 

dynamical system. To do this end, the aforementioned system is considered to be uncontrolled (meaning no damper is used) and a 

controlled case is assumed where a TMD is placed on the top floor. TMD performance mainly relies on the set of parameters (mass 

ratio, damping ratio, and stiffness). In reality, the tuning process of those parameters take serious effort and gets worse with the 

complicacy of the structure. Hence to obtain better performance of the TMD the damping ratio and the frequency of the TMD are 

optimized by using unconstrained derivative-free method. Finally, the uncontrolled and controlled performance of the sixteen-storied 

structure has been evaluated and compared. The results show that the dynamical response of the studied problem can be reduced 

significantly via the use of optimized parameters. 
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1. Introduction   

The dynamic response of any buildings, bridges, towers, and 

power-plants are difficult to deal with due their complex 

phenomena. However, the safety of the aforementioned 

structures is not an option but must due to their importance in the 

society. Though there are many alternatives (passive, active, 

hybrid, etc.) available in existing literature [1]-[5] but still 

improvements are essential. The improvements of available 

alternatives are essential to fulfill the upcoming uncertain 

challenges and events such as gale thrust, and earthquake [5]. 

The tuned-mass damper (TMD) falls into the passive category. 

And TMD is one of the oldest vibration mitigation system and 

implemented to many existing structures [4]. For instance, the 

London Millennium Bridge, Tehran International Tower in Iran, 

Taipei 101 in Taiwan, Trump World Tower in USA, Tokyo 

Skytree, Burj Khalifa in UAE, and so on have adopted TMD to 

reduce unwanted vibration [6]. The performance of any TMD 

depends on the proper selection of its parameters. Many [7]-[12] 

have studied the role of TMD parameters such as mass ratio, 

stiffness, and damping have been reported their selection or 

tuning process. TMDs are widely used in various types of 

structures due to their simple structure and reasonable 

performance among other alternatives [11]. Typically, the 

performance of any TMD relies on the best selected parameters 

through tuning process. To tackle drawbacks of manual tuning 

process, [13]-[21] works have done the optimizing of TMDs 

properties using genetic algorithm. Initial works of modern TMD 

functionality was surfaced by Den Hartog [7]. Afterward, many 

[1],[11],[14] have developed different types of TMD.  

Over the last few decays, many alternatives of TMD and its 

variations have been developed and implemented, such as active 

control systems, semi-active control systems, and hybrid control 

systems [1]-[6]. And early mentioned works have reported the 

superior performances of those controlling systems. However, 

there are underlying drawbacks of those controlling systems as 

most of the controlling technique (e.g., active) requires electric 

power, and that is quite difficult to ensure during an extreme 

event such as earthquake [2],[5]. And this is one of the most 

important issues about TMD that it does not require any electric 

power for its operation during an extreme event. Hence it can be 

operated even during an extreme event without putting much 

extra effort [4],[8],[11]. In general, the selection of TMD 

parameters take into a complicated situation when the structures 

are complex [15]. And when the structures are taller, the process 

gets harder to deal with; hence to overcome such issue 

optimization is preferable instead of manual tuning [19]. 

Therefore, an optimization will assist to overcome the drawbacks 

of sub-optimal tuning of parameters.     

This study aims to evaluate the performance of TMD under 

earthquake and harmonic type dynamic loads. Additionally, the 

possibility of optimization of damping ratio and the frequency of 

the TMD has been investigated. In order to perform numerical 

analyses, the compact formulation of state-space is adopted. 

Additionally, the unconstrained derivative-free method was 

employed to perform the optimization. For numerical 

investigations, a sixteen-storied dynamical system is considered. 

Finally, the results of controlled and uncontrolled systems are 

compared. 

2. Formulation and Description of the Problem 

Usually, the dynamical systems are considered to be lumped-

mass system and modeled as mass-spring-dashpot systems (see 

Fig. 1. And the dynamical systems are written into individual 

equation of motion by employing Newton’s Second Law of 

classical mechanics. However, it is quite difficult to deal will 

several equations as each degree-of-freedom will provide an 

equation of motion. Hence in order to perform the investigations, 

those equations of motion need to bring into matrix-vector form. 

A dynamical system coupled with a TMD can be described as, 
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]

⏟              
𝐾

𝑢(𝑡)

= −Γ�̈�𝑔(𝑡) + ΥF(𝑡) 

(1) 

where 𝑀 represents the mass matrix (𝑛 × 𝑛), 𝐶 is the 

damping matrix (𝑛 × 𝑛), 𝐾 indicates the stiffness matrix (𝑛 × 𝑛), 

𝑛 is the number of degree-of-freedoms, �̈�, �̇�, and 𝑢 are the 

acceleration, velocity, and displacement vectors, respectively, 

and they have a size of 𝑛 × 1, 𝑡 is the time vector, �̈�𝑔 means the 

input disturbance, F is the TMD control force, Γ control the input 

excitation location, Υ locates the position of TMD. Note the 

second term on the right-hand side of the equation that will not 

be available if there is no control force applied to the system. 

The free-body-diagrams of every degree of freedom (e.g., 

floor) are essential to derive the individual floor’s equation of 

motion. Sample free-body-diagrams of the 1st, 5th, and top floor 

with TMD are depicted in Fig. 1 (b-d), respectively. And all of 

the equations are then complied into a compact form known as 

state-space formulation. The above-mentioned equation (Eq. (1)) 

can be further written into state-space form. The state-space 

formulation is accompanied with two main equations, (i) the 

system equation Eq. (2), and (ii) the observation equation Eq. (3). 

The system equation contains all the information related to 

consider dynamical system including input excitation and control 

force. 

�̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑈(𝑡) (2) 

Where 𝐴 is the system matrix, B indicates the input matrix, 𝑋 

is the state vector, and  𝑈 contains the input excitation and control 

force information. 

 

Fig. 1 The dynamical system: (a) the lumped-mass model, (b) 

free-body-diagram of 1st floor, (c) free-body-diagram of 5th 

floor, and (d) free-body-diagram of top floor. 

While the observation equation describes about the 

information what ones want to measure or observe. Hence this 

equation needs to be modified as per the designer desire (based 

on what he/she wants to measure). 

𝑦(𝑡) = 𝐶𝑋(𝑡) + 𝐷𝑈(𝑡) (3) 

where 𝐶 is the output matrix, 𝐷 indicates the feedthrough 

matrix,  𝑦 is the output vector.   

The parameters of the TMD has been tuned in a hybrid 

manner, more specifically, the mass ratio (𝜇) of the TMD is done 

through conventional procedure. The mass ratio of the TMD is 

defined as the ratio of the mass of the TMD to the targeted floor 

mass of the structure. While the frequency of the TMD has been 

defined as, 

𝜔𝑑 = 𝛿 × 𝜔𝑛
𝑡𝑎𝑟  (4) 

where 𝜔𝑑 is the frequency of the TMD,  𝜔𝑛
𝑡𝑎𝑟  is the targeted 

natural frequency of the structure, 𝛿 is the parameter needs to be 

tuned or determined to obtain an optimal frequency of the TMD. 

Further, the damping ratio of the TMD has been given by, 

𝐶𝑑 = 2(𝛼𝜏
𝑡𝑚𝑑)𝜔𝑑  (5) 

where 𝛼 is a parameter links to the mass ratio of the TMD 

(but determined by the optimization algorithm), 𝜏𝑡𝑚𝑑 is the 

damping ratio of the TMD.  

3. The Optimization Algorithm 

A brief overview of the applied optimization algorithm is 

provided in this section. Assume the objective function of a 

problem is given by, 

 
𝑚𝑖𝑛
𝑥

 𝑓(𝑥) → 𝑥 𝜖 ℝ𝑛 

Then the iteration of the Nelder-Mead algorithm follows as 

shown below, 

(i) Order: Order the 𝑛 + 1 vertices to satisfying the following 

rules  

𝑓(𝑥1) ≤ 𝑓(𝑥2) ≤  , … , ≤ 𝑓(𝑥𝑛+1) 

(ii) Reflect: determine the reflection point 𝑥𝑟  

𝑓𝑟 = 𝑓(𝑥𝑟) = �̅� + 𝜌(�̅� − 𝑥𝑛+1)

= (1 + 𝜌)�̅� − 𝜌(𝑥𝑛+1);    �̅� = ∑
𝑥𝑖
𝑛

𝑛

𝑖=1

 

(iii) Expand: If 𝑓𝑟 < 𝑓1 determine the expansion point 𝑥𝑒 

𝑓𝑒 = 𝑓(𝑥𝑒) = �̅� + 𝜒𝜌(�̅� − 𝑥𝑛+1)
= (1 + 𝜌𝜒)�̅� − 𝜌𝜒(𝑥𝑛+1) 

If 𝑓𝑒 < 𝑓𝑟 accept the expansion point 𝑥𝑒 

(iv) Contract: if 𝑓𝑟 ≥ 𝑓𝑛 then perform a contraction 

between �̅� and the better 𝑥𝑛+1and 𝑥𝑟  

Outside: if 𝑓𝑛 ≤ 𝑓𝑟 < 𝑓𝑛+1 then calculate 𝑥𝑐, perform an 

outside contraction 

𝑓𝑐 = 𝑓(𝑥𝑐) = �̅� + 𝛾(𝑥𝑟 − �̅�) = �̅� + 𝜌𝛾(�̅� − 𝑥𝑛+1)

=  (1 + 𝜌𝛾)�̅� − 𝜌𝛾𝑥𝑛+1 

If 𝑓𝑐 ≤ 𝑓𝑟 accept the contraction point 𝑥𝑐 , and terminate the 

iteration; otherwise, go to perform a shrink. 

Inside: if 𝑓𝑟 ≥ 𝑓𝑛+1 then calculate 𝑥𝑐𝑐, perform an inside 

contraction 

𝑓𝑐𝑐 = 𝑓(𝑥𝑐𝑐) = �̅� − 𝛾(�̅� − 𝑥𝑛+1) = (1 − 𝛾)�̅� + 𝛾𝑥𝑛+1 

If  𝑓𝑐𝑐 < 𝑓𝑛+1 accept the contraction point 𝑥𝑐𝑐, and terminate 

the iteration; otherwise, go to perform a shrink. 

Perform a shrink step: Evaluate 𝑓𝑛 at the 𝑛 points 

𝑣𝑖 = 𝑥1 + 𝜎(𝑥𝑖 − 𝑥1), 𝑖 = 2, … , 𝑛 + 1 

Interested reader may obtain detail information about basic 

formulation of the employed optimization algorithm through 

[21]. 
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4. Results and Discussion 

The numerical investigations are performed by employing 

MATLAB and SIMULINK. It is mentioned that a sixteen-storied 

structure is considered for this study. And the response of the 

structure is evaluated subjected to harmonic type load and the 

Loma Prieta Earthquake 1989 data. The input excitations (a) 

Loma Prieta Earthquake 1989, and (b) harmonic loads are 

presented in Fig. 2. It is important to note that the input 

excitations are going to influence the output of the structure. That 

is the reason of choosing different excitations force to excite the 

selected system. The whole simulations are performed for both 

uncontrolled and controlled structure for earthquake and 

harmonic loads. 

 

Fig. 2 The input excitations: (a) Loma Prieta Earthquake, and 

(b) harmonic loads. 

 

Fig. 3 The power spectral density of the input excitations. 

 

Fig. 4 Comparison of uncontrolled and controlled response of 

15th and 16th floors under Loma Prieta earthquake. 

The duration of the excitations 40 sec for earthquake and 100 

sec for the harmonic load, also can be found in Fig. 2. In order to 

understand about the governing frequency (see the peaks) of the 

excitations, the power spectral density (PSD) of both input 

excitations are depicted in Fig. 3. The structure is assumed to 

have a mass in every floor of 50 × 103 kg and stiffness is 

assumed to have 70000 × 103 N/m, and the damping 

coefficients are assumed to 1.3334 × 103 N-s/m. It is mentioned 

earlier optimization was performed by adopting unconstrained 

derivative-free method.  

Hence the simulations are performed using those optimized 

values of 𝜏𝑡𝑚𝑑 & 𝛿 instead of manual tuning. And the parameter 

𝛼 is assumed to be 0.04 × 𝑚𝑡𝑎𝑟 , where 𝑚𝑡𝑎𝑟  is considered to be 

modal mass of the targeted mode. However, that does not affect 

the uncontrolled structural response except the changes of input 

excitations e.g., earthquake, harmonic. To evaluate the 

performance of the optimized values of the TMD, the top two 

floors (𝑥15 and 𝑥16) displacements are compared for controlled 

and uncontrolled scenarios. Fig. 4 shows the comparison of the 

controlled (dotted red-line) and uncontrolled (black-line) 

displacements for the Loma Prieta 1989 earthquake data. It is 

visible that the response of the structure has been mitigated 

effectively. 

 

Fig. 5 Comparison of uncontrolled and controlled response of 

15th and 16th floors subjected to harmonic load. 

Afterward, the structure was hit by the harmonic load and the 

response of the uncontrolled and controlled structures are 

compared in Fig. 5. The dotted red line indicates the controlled 

response and the black line represents uncontrolled case. From 

the figure it can be stated that the vibration was reduced 

significantly. 

 

Fig. 6 The response of 8th and 9th floors subjected to harmonic 

load (a-b) and earthquake loads (c-d). 

Furthermore, the maximum displacements of every floor 

have been evaluated and depicted in Fig. 5. The left figure (see 

Fig. 5 (a)) shows the output of the structures due to earthquake 

and the right figure (see Fig. 5 (b)) exhibits the response under 

harmonic load. The response of 8th and 9th floors are presented in 

Fig. 6 and it is visible that those floors are suffering with abrupt 

deformation. This phenomenon is also noticeable in Fig. 7.  

(a) 

(b) 

(a) 

(b) 

(a) 

(b) 

(a) 

(b

) 

(c) 

(d
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It can be found that the maximum displacements of every 

floor have reduced for both earthquake and harmonic loads. It 

also visible in Fig. 7 (a) that the structure will reach in a position 

where it will face nonlinear/large deformation as a result 

structure may fail party/fully. Hence such situation will demand 

more safety to survive from extreme loads. However, the early 

mentioned situation also may occur even when harmonic type 

load hits the structure totally an unexpected way as shown in Fig. 

7 (b).    

 

Fig. 7 The uncontrolled and controlled response of all of the 

floors subjected: (a) Loma Prieta earthquake, and (b) harmonic 

load. 

5. Conclusion 

The performance of a sixteen-storied dynamical system with 

and without TMD are investigated. Further, the frequency and 

the damping ratio of the TMD has been optimized to obtain better 

performance. An unconstrained derivative-free optimization 

method is used to perform the optimization. The outcome of the 

study shows that the optimization may be suitable for tall-

buildings as complexities are not limited to the structure but also 

from input excitation and model descriptions. Hence to deal with 

such uncertain situation optimization of any tuning parameter 

such as mass ratio, damping ratio and stiffness of the TMD will 

perform better in comparison to sub-optimal/manual tuning. The 

future direction of this study will focus into the system 

identification to deal with more complex problems. 
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