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ABSTRACT   

The characteristics of a linear Quadratic Regulator (LQR) are hinged upon two parameters and they are, the state weighting matrix 

Q and the Control weighting matrix R. In this study Global Best Inertia Weight modified variant of the particle swarm optimization 

algorithm was used to determine these two important parameters of an LQR which was then used to control a bus suspension system. 

The evaluation of the open loop and closed loop showed that the closed loop system attained a steady state in a time of 350.36 seconds 

compared to the open loop system (47,734.3 seconds) when both systems were subjected to pot hole (step) signal. 

Keywords: Linear Quadratic Regulator (LQR), Bus Suspension, Road Profile, Global Best Inertia Weight Modified Particle 

Swarm Optimization (GBbest IWM PSO) Algorithm. 
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1 Introduction   

LQR is a type of linear optimal control that is based on a 

state space representation model. It is used for multivariate 

dynamic systems [1]. It generates a control law by utilizing 

feedback from its output with its derivatives [2]. Its performance 

or behaviour, is determined by the state weighting matrix Q and 

the control weighting matrix R [3]. The values of Q and R, are 

traditionally ascertained by trial-and-error method [3], and using 

traditional control methods can be so laborious that at times, it 

can be so difficult to achieve the best parameters [4], [5], [6]. Due 

to the aforementioned reason, researchers used various 

evolutional algorithms such as particle swarm optimization 

(PSO) algorithm, Bees algorithm, and Ant Colony among others, 

to determine the weighting parameters Q and R of an LQR [4]. 

PSO is an Optimization algorithm which is the result of research 

by Dr. Russell Eberhart and James Kennedy in 1995 [7]. It is a 

computational method based on the idea of collective conduct 

and swarming of populations inspired by the social attitude of 

bird flocking and fish schooling [8]. The merits of PSO are that 

it is simple and easy to apply and has quick convergence [9]. It, 

however, has a disadvantage in that, its particles are sometimes 

trapped in a local minimum instead of the global minimum, at 

the later part of convergence thus the final value ends up being a 

local minimum instead of a global minimum. For this reason, 

researchers have come up with various modified variants of PSO 

which include: Discrete PSO, Guaranteed Convergence PSO, 

Regrouping PSO, Neighborhood Guaranteed Convergence PSO, 

Niche PSO, Neighborhood search PSO, Immunity-Enhanced 

PSO, Quantum-Behaved PSO, Multi-Objective Optimization 

PSO, Hybrid PSO among others. These are meant to raise the 

diversity of particles and enhance convergence performance 

[10]. 

This research used the Global best inertia weight modified 

variant of PSO (Gbest IWM PSO) to determine the parameters 

of LQR to control a Bus suspension system. 

2 Concept and Review of Related works 

The aim of designing and controlling a system with LQR is 

to return the system to an equilibrium whenever it is displaced 

from equilibrium in such a way as to minimize a performance 

index [11]. A performance index is referred to as the addition of 

deviations of key measurements from their desired state or 

values. To find the optimal gain, the performance index is first 

defined and then the solution of the resulting Algebraic Riccati 

Equation (ARE) is obtained [12]. In this research, we sort to use 

LQR to control a bus suspension system so that whenever the 

suspension system is subjected to a road disturbance, it dampens 

out oscillations as quickly as possible. A suspension system is a 

device that isolates the body of an automobile from its wheels 

[13]. It is made up of linkages, damper, and springs that connect 

a bus to its wheels as shown in Fig. 1. 

 

Fig. 1 Diagram of a vehicle suspension system 

It is used to decrease the vertical acceleration transmitted to 

occupants (fare payers and driver) of an automobile. The 

suspense is designed to provide road handling capacity, load 

carrying capacity, and passenger comfort.  
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Three types of automobile suspense exist and are active, 

semi active, and passive. The passive system consists of passive 

elements such as springs and a damper (shock absorber) [13], 

[14], [15], [16].  It stores energy by means of springs and 

dissipates them through the damper. The active system stores, 

dissipates, and introduces energy into the system. While the 

active system can be seen as a closed loop system, the passive is 

an open loop system. The semi active system is a compromise of 

both the active and passive systems. It doesn’t introduce power 

into the system and hence cannot make the system to be unstable, 

unlike active suspense.  

The bus suspension block diagram shown in Fig. 1 

comprises of mass M1, which is a quarter of the automobile body 

mass, also referred to as the sprung mass while mass M2 is the 

mass of tires and wheels, also referred to as the unsprung mass, 

K1 and K2 are the spring constant of sprung and unsprung mass 

respectively, b1 and b2 are the damping constant of sprung and 

unsprung mass respectively, W(t) represents the road 

disturbance, X1 and X2 are the system output while U(t) is the 

actuating signal. See Table 1. 

In PSO, every particle is a prospective solution in the search 

space [7]. Their movement is determined by two key elements: 

first is the individual particle's best position and second, the 

global best position, which is the overall best position that has 

been generated by the entire particle (swarm). The velocity and 

position of each particle are updated for each iteration, using Eq. 

(1) and Eq. (2). 

𝑉𝑖
𝑡+1 = 𝑉𝑖

𝑡 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑖𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝑡) + 𝐶2 ∗

𝑟𝑎𝑛𝑑2 ∗ (𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝑡)     

(1) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1 (2) 

Where 𝑉𝑖
𝑡+1 is the present particle velocity, 𝑉𝑖

𝑡 is the 

previous particle position, 𝑋𝑖
𝑡+1 is the present particle position, 

𝑋𝑖
𝑡 is the previous particle position, 𝑃𝑖𝑏𝑒𝑠𝑡  is the particle's best 

position, 𝐺𝑏𝑒𝑠𝑡  is the Global best position, 𝐶1 and 𝐶2 are personal 

and social acceleration coefficients respectively, 𝑟𝑎𝑛𝑑1 and 

𝑟𝑎𝑛𝑑2 are random variables between one and four. 

To improve control on the scope of the search, Shi and 

Eberhart introduced inertia weight (W) in 1998 [17] and the 

updated velocity value is shown in Eq. (3). 

𝑉𝑖
𝑡+1 = 𝑊 ∗ 𝑉𝑖

𝑡 + 𝐶1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑖𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝑡) + 𝐶2

∗ 𝑟𝑎𝑛𝑑2 ∗ (𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝑡) 

(3) 

Further, Arumugan & Rao, in 2006, proposed the Gbest 

IWM PSO algorithm [18] in which, instead of W being a 

constant, as seen in Eq. (3) and stipulated by Shi and Eberhart, it 

was made to be dependent on the values of particle best and 

global best position for each iteration as shown in Eq. (4). 

𝑊𝑖 = (1.1 −
𝐺𝑏𝑒𝑠𝑡

𝑃𝑖𝑏𝑒𝑠𝑡
)  (4) 

3 Methodology 

     Based on the diagram of a bus suspension model in Fig. 

1 and Newton’s law of motion two equations can be derived. 

They are: 

𝑈(𝑡) = 𝑀1𝑋̈1 + 𝑏1(𝑋̇1 − 𝑋̇2) + 𝑘1(𝑋1 − 𝑋2) (5) 

𝑊(𝑡) = 𝑀2𝑋̈2 + 𝑏2𝑋̇2 + 𝑏1(𝑋̇2 − 𝑋̇1) + 𝑘2𝑋2 +

𝑘1(𝑋2 − 𝑋1)  
(6) 

Table 1 Bus suspense parameters (source [19]) 

Symbol Parameter Value/unit 

𝑀1 A quarter of the bus body 

mass 

2,500 kg 

𝑀2 Unsprung mass (tire and 

wheel) 

320 kg 

𝑘1 Spring coefficient of the 

suspension system 

80,000 N/m 

𝑘2 Spring coefficient of wheel 

and tire 

500,000 

N/m 

𝑏1 Damping coefficient of the 

suspension system 

350 N.s/m 

𝑏2 Damping coefficient of tire 

and wheel 

15,020 

N.s./m 

W(t) represents the road disturbance and u(t) is the actuating 

signal. The state space model of the system was then designed 

from the state space equations. Consider a representation of the 

linear time invariant (LTI) system shown in Fig. 2.  

ẋ =  𝐴𝑥 +  𝐵𝑢 (7) 

𝑦 =  𝐶𝑥 +  𝐷𝑈 (8) 

Where A is n x n state matrix, B is n x r input matrix, C is m 

x n output matrix, D is m x r direct transmission matrix, x is n x 

1 state vector, y is m x 1 output vector and u is r x 1 input vector. 

 
Fig. 2 Block diagram of LTI system. 

The cost function of a linear Quadratic regulator is: 

J =  
1

2
∫ (xTQx +  uTRu

tf

t0

)dt (9) 

Where Q is a positive semi-definite nxn matrix called the 

State weighting matrix and R is a positive definite matrix that is 

called the control weighting matrix. The aim of an LQR design 

is to achieve an optimal control input u* that will minimize the 

cost (objective) function as 𝑡𝑓 tends to infinity. 

u* = -Kx(t)          (10) 

K = 𝑅−1𝐵𝑇𝑃 (11) 

Where K is the optimal control feedback matrix and P is the 

solution of the ARE which is 

PA+𝐴𝑇𝑃 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0       (12) 

The performance Index used for this research is Integral 

Time Absolute Error ie 

ITAE = ∫/𝑒/dt (13) 

ẋ=Ax + Bu 

y = Cx + Du 
r             +  e 

     - 

K 

y 

r             +  
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Where e from Fig. 2, is the error signal, given as: 

𝑒 =   𝑟 –  𝑘𝑦                    (14) 

r is the reference input and y is the system output. 

The plant was designed in MATLAB SIMULINK using 

MATLAB 2020b version, while the Gbest IWM PSO algorithm 

was coded on the EDITOR window by applying the chosen 

performance index (ITAE) as its objective function with its 

parameters indicated in Table 2. The PSO variant was set to run 

for fifty iterations and the Global best position was recorded. 

With the aid of the MATLAB “To Workspace” block and 

MATLAB “sim” command, the Simulink model and the 

EDITOR were able to interact and results were recorded. 

Utilizing Eqs. (11) and (12), the values of P, Q, and R were 

derived. 

Table 2 Gbest IWM PSO parameters 

S/N Item Value Unit 

1 C1 2 Constant 

2 C2 2 Constant 

3 n 4 Number 

4 vsize [1 n] 1xn matrix 

5 pop 100 Number 

6 minvar -10000 Meter 

7 maxvar 100000 Meter 

8 Maximum velocity 22000 m/s 

9 Minimum velocity -22000 m/s 

Where n is the number of decision variables, vsize is the 

matrix size of decision variables, pop is the particle population, 

minvar is the lower bound of the particles, and maxvar is the 

upper bound of the particles. 

The designed LQR controlled system was then subjected to 

test signals and the outputs were recorded.  

Test signals: Two different types of test signals representing 

two road conditions were utilized for this study. They can be 

referred to as road profiles, road disturbances, or road conditions. 

They are: 

Step input- this was modeled to emulate a pot-hole condition 

of roads. It can be better understood when seen as a vehicle 

coming out of a pot hole. Fig. 3.  

 

Fig. 3 Step signal 

Road Bump or Speed breaker- this is a combination of step 

input, product block, and sine wave (Fig. 4) to produce the signal 

shown in Fig. 5 [14]. 

 
Fig. 4 Design layout of speed breaker 

 

Fig. 5 Speed breaker signal 

4 Results and Discussion 

    The following are the simulation results: 

Gbest = [73326 74138 5757 83650],          R = 
1

17.9413
× 10−8 

 

𝑝 =  [

6.51 0.1567 −26.1942 0.0201
0.1567 106.5042 −1.363 −12.5524

−26.1942 1.1363 187.4036 0.0202
0.0201 −12.5524 −0.0202 103.1717

],          

𝑄 = [

0 0 0 0
0 3 0 0
0 0 0 0
0 0 0 10

] 

 

The open loop system response is shown in Fig. 6, while Fig. 

7 shows the step response of the LQR controlled closed loop. Fig. 

8 and Fig. 9 give the system's response to bump input. Fig. 10 

and Fig. 11 show the pole locations of the open and closed loop 

systems in graphical form.  

The system response consists of deflection and velocity due 

to the sprung and unsprung mass. For the deflection of sprung 

mass, the open loop system attained a maximum peak to trough 

value of 0.0000289cm to 1.9632 × 10−7cm at a time of 19.51 

seconds and 37.05 seconds respectively, a rise time of 9.95secs 

and a settling time of 47,734.3secs with a steady state value of 

0.00001443 cm.  For the velocity of sprung mass, the open loop 

system has a maximum peak to trough value of 2.4028 × 10−6 

to −2.39399 × 10−6 cm/s with a peak time of 9.477 seconds 

and trough time of 28.726 secs and settling time of 35,000 secs. 

As regards the deflection of unsprung mass, the maximum peak 

value was 4.04471 × 10−6 cm/s, maximum trough value was 

  

                                 X 

  

  
Step block 

Sine Block 

Product block scope 
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3.51567 × 10−8 cm/s with a peak time of 18.74 secs, trough 

time of 39.478 secs, and settling time of 33,357.21 secs. For the 

velocity of unsprung mass, the maximum peak to trough was 

3.63609 × 10−7 cm/s to −3.54501 × 10−7 cm/s, peak and 

trough times of 8.34 and 29.004 secs respectively, and a settling 

time of 20,000 seconds (See Fig. 6). 

 

Fig. 6 Open loop system step response. 

For closed loop response to pothole signal, as shown in Fig. 7, as 

regards deflection of sprung mass, the maximum peak to trough 

value was 1.74477 to 0.444732 cm, the peak time of 19.02 secs, 

trough time of 37.35 secs, the rise time of 9.94 secs, settling time 

of 350.36 secs with a steady state value of 1cm. For the velocity 

of sprung mass, the maximum peak to trough was 0.143799 cm/s 

to -0.107065 cm/s, peak and trough times of 9.52 and 28.72 secs 

respectively, settling time of 341.33 secs with a steady state value 

of 0. As regards the deflection of unsprung mass, the maximum 

peak to trough was 0.243473 to 0.0601832 cm with a peak time 

of 18.75 secs, trough time of 37.98 secs, and settling time of 

351.3 secs. While for the velocity of unsprung mass, the 

maximum peak was 0.0224102 cm/s at a time of 8.24 secs, the 

maximum trough of -0.0162871 cm/s at a time of 28.97 secs and 

a settling time of 351.3 secs. 

 

Fig. 7 LQR controlled system step response. 

As shown in Fig. 8, with regards to the system open loop 

response, the deflection of sprung mass attained a maximum 

peak of 4.7708 × 10−6 cm, maximum trough value 

of −4.74961 × 10−6 cm, the peak time of 11.04 secs, trough 

time of 29.56 secs, and settling time of 42,281.1 secs. For the 

velocity of sprung mass, the maximum peak was 7.66769 ×

10−7 cm/s, the maximum trough of −7.89802 × 10−7 cm/s, the 

peak time of 3.057 secs, trough time of 20.517 secs, and settling 

time of 40,000 secs. Furthermore, for the deflection of unsprung 

mass, the maximum peak to trough was 6.98899 × 10−7 to 

−6.87874 × 10−7 cm/s at a peak time of 10.001 secs, trough 

time of 30.301 secs, and settled at 35,000 secs. For the velocity 

of unsprung mass, the maximum peak was 1.70288 ×
10−7cm/s, maximum trough value was −1.5608 × 10−7 cm/s, 

the peak time of 3.8544 secs, trough time of 20.214 secs, and 

settling time of 32,500 secs. 

 

Fig. 8 Open loop bump response. 

As shown in Fig. 9, which is the closed loop response to the speed 

breaker, as regards deflection of sprung mass, the maximum peak 

was 4.15357 × 10−6 cm, maximum trough of−3.11115 ×
10−6 cm, peak time of 10.12 secs, trough time of 29.54secs and 

settling time of 347.73secs. With reference to the velocity of 

sprung mass, the maximum peak was 7.33138 × 10−7cm/s, 

maximum trough of−6.0146 × 10−7cm/s, the peak time of 3.01 

secs, trough time of 19.25 secs, and settling time of 313.67 secs. 

For the deflection of unsprung mass, the maximum peak was 

6.20629 × 10−7 cm at a time of 10.11 secs, the maximum 

trough value was −4.57009 × 10−7 cm at a time of 30.29 secs 

and a settling time of 306.42 secs. Finally, as regard the velocity 

of unsprung mass, the maximum peak was 1.63343 ×
10−7 cm/s, the maximum trough was −1.28999 × 10−7 cm/s, 

the peak time of 3.82 secs trough time of 20.22 secs, and settling 

time of 291.303 secs. 

 

Fig. 9 LQR controlled system bump response. 
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Fig. 10 Open loop system pole location. 

 

Fig. 11 LQR controlled system pole Location. 

From Fig. 10 the open loop pole locations are -0.024 ± 

j1.3477 and -0.0001 ± j0.1659 while that of the closed loop are 

at -0.024 ± j1.3478 and -0.0151 ± j0.1652 (Fig. 11). As can be 

observed, there was a significant relocation of the dominant poles 

further away from the origin of the s-plane which resulted in a 

reduction of the system oscillation. Hence the closed loop system 

damps out oscillation in a shorter duration (350.36 seconds) 

compared to the open loop (over 47,734.3 seconds) when the 

systems are subjected to step response. Also, when the system 

was subjected to a speed breaker, the open loop attained a steady 

state at about 42,281.1 seconds while the closed loop system 

attained it at 347.73 seconds considering the deflection of sprung 

mass only.  

5 Conclusion 

This research applies Gbest IWM PSO to determine the 

parameters of an LQR to control a bus suspension system and 

not a comparison with any other method. However, comparing 

the open loop system with the closed loop shows significant 

improvement in the output in terms of reduction in the number 

of oscillations and settling time due to a drastic relocation of the 

dominant system poles (-0.0001 ± j0.1659) farther away from the 

origin of s-plane (Fig. 10 and Fig. 11). The reduction in the 

number of oscillation and shorter settling time translates into 

comfort for the occupants of the automobile. 
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