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ABSTRACT   

The Telegraph equation has drawn much attention due to its recent variety of applications in different areas of the communication 

system. Various methods have been developed to solve the Telegraph equation so far. In this research paper, we have formulated a 

derivation mathematically for the Telegraph equation for the section of a line of transmission concerning the voltage associated and the 

current. Therefore, obtained mathematical equation has been solved numerically by COMSOL Multiphysics. We have then numerically 

analyzed the parametric behavior of the Telegraph equation. The analysis first starts with allowing both the damping coefficients to 

vary, keeping the transmission velocity fixed, and observing the pulse shape at different time slots. We have then investigated the 

deformation of the pulse caused due to the gradual increase of transmission velocity for varying damping coefficients at the intended 

discrete time slots. Finally, we analyzed the behavior of the associated voltage pattern for those variations due to the corresponding 

distance of the Telegraph wire. We have observed that changes in the damping coefficients have a gradual impact on the associated 

voltage of the Telegraph equation, which is more conspicuous for the higher time slots. Transmission velocity is found as the most 

influential parameter of the Telegraph equation that controls the deformation of the pulse height, which is the cardinal part of the 

inquiry. 

Keywords: Damping Coefficients, Transmission Velocity, Time Propagation, Voltage Drop, Pulse Height, COMSOL 

Multiphysics, Numerical Simulation. 
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1 Introduction   

In this modern age, we need a high-frequency 

communication system and this system needs transmission 

media for transferring a signal from one point to another. We can 

categorize the transmission media into two groups, viz. guided 

and unguided media. Signals through the guided medium are 

transferred through the transmission line or the coaxial cable. But 

in the case of unguided media, the signals partly or entirely 

through the path of communication are carried by 

electromagnetic waves and are carried through the radio 

frequencies (RF) and microwaves (MW) communication 

channels. Transmission and reception of electromagnetic waves 

are done through the antenna. For addressing the problem of 

efficiency of telegraphic transmission in the case of guided 

medium, we investigate the cable transmission medium 

specifically. Since all the systems incur losses, optimizing the 

system of communication with guided, therefore the 

determination or power of the project along with the losses of 

signals is essential. For the determination of loss and finally for 

ensuring the output with maximum value, we need the 

determination of the losses, and these losses are to be calculated 

with some equations which are to be formulated essentially. 

1.1 Historical Background of Telegrapher's Equations 

The Telegraph equations are comprised of differential 

equations in linear pairs. These equations express 

the voltage and current through a line of transmission with 

electricity based on the distance covered and the time spent. 

These equations had been followed since Oliver Heaviside 

developed the model of the line of transmission in the 1880s, and 

that is what is described in this paper [1]. The objective model is 

to demonstrate the waves related to electromagnetic that can 

have reflection through the wire. Also, these patterns of waves 

may have their appearance along these lines [2]. This concept 

may apply to the lines of transmission regardless of frequency 

that is for lines of transmission with frequency in high (for 

example, wires of the telegraph, conductors corresponding to 

frequency of radio), frequency of audio (e.g., lines of telephone), 

and frequency is low (e.g., lines of power). And it is also 

applicable for direct current (DC) [3]. 

S. A. Yousefi applied a numerical method based upon 

Legendre multiwavelet approximations for solving the one-

dimensional hyperbolic telegraph equation. He utilized the 

properties of the Legendre multiwavelet along with the Galerkin 

method to reduce the telegraph equation to the solution of 

algebraic equations [4]. M. Lakestani and B. N. Saray solved the 

Telegraph equation using interpolating scaling functions and 

reduced the equations to a set of algebraic equations using the 

operational matrix of derivatives [5]. M. Dehghan and A. 

Ghesmati developed a new method based on the unification of 

fictitious time integration (FTI) and group preserving (GP) 

methods and applied it to solve the Telegraph equation [6]. V. K. 

Srivastava et al. deduced the exact solution or a close to the exact 

solution of the differential equations by the reduced differential 

transform method and applied it to the Telegraph equation too 

(RDTM) [7]. R.C. Mittal and R. Bhatia numerically solved the 

one-dimensional hyperbolic telegraph equation by the B-spline 

collocation method. The method is based on the collocation of 

modified cubic B-spline basis functions over finite elements [8]. 

R. C. Tautz and I. Lerche introduced a closed-form analytical 

technique for solving the three-dimensional Telegraph equation 

https://doi.org/10.38032/jea.2022.03.005
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and implemented it for cosmic-ray transport [9]. G. Arora and V. 

Joshi obtained the approximate solution of the telegraph equation 

with two different modified spline basis functions by the 

differential quadrature method and computed the weighting 

coefficients to transform the equation into a set of first-order 

conventional differential equations that were again solved by the 

SSP-RK43 method and compared the convenience of the 

methods applied [10]. S. N. Hussen numerically solved the one-

dimensional hyperbolic telegraph equation by using the q-

homotopy analysis method (q-HAM) and obtained greater 

convergence compared to the homotopy analysis method (HAM) 

[11]. Z. Stojanović and E. Čajić observed the phenomena 

occurring in one part of the electromagnetic spectrum in the 

frequency range of 1 GHz-100 GHz as an aggravating factor in 

signal transmission by telecommunication water [12]. H. Khan 

et al. implemented a decomposition method-based analytic 

approach utilizing the natural transformation. Caputo operator is 

incorporated for the fractional derivative and applied for the 

analytical treatment of the solution of fractional-order hyperbolic 

Telegraph equation. Some practical examples are assigned for 

the justification of their work [13]. M. S. Hashemi applied the 

technique of Shape functions extracted from the moving Kriging 

(MK) interpolation to the weak form of the telegraph equation 

(TE) in space coordinates and got a system of second-order 

ordinary differential equations concerning the time variable. The 

resultant system was solved by the group preserving scheme 

(GPS) [14]. Y. Zhou et al. derived a hybrid meshless method for 

solving the second-order telegraph equation in two-space 

dimensions incorporating the Dirichlet or mixed boundary 

conditions. They successfully applied and validated their work 

for a meshless finite difference method for solving and analyzing 

the second-order Telegraph equation [15]. 

In this work, we have analyzed the behavior of the voltage 

pattern of the Telegraph wire due to the variations of the 

corresponding parameters, namely, damping coefficients and 

transmission velocity for several discrete time slots. The solution 

of the Telegraph equation is not aimed but rather the impact of 

the parametric variations. The investigation is incorporated 

numerical simulation, graphical representation, and narrative 

analysis. A case-by-case discussion is conferred at the end of the 

work. 

1.2 Distributed Components 

The Telegraph equation, like other equations that describe 

phenomena in electrical, is resulted from Maxwell's equations 

[16]. In the practical application of engineering fields, it is 

assumed about the conductors that they comprise components 

with two-port and a series of infinite elementarily and each 

component represents a segment that is short and very 

infinitesimal to the line of transmission [17]. For the convenience 

of the description of the components and attributes of the 

Telegraph equation, Table 1 is indispensable, which includes the 

interpretations of various symbols and notations that are 

associated with this work. 

 

Fig. 1 Schematic depiction of the distributed components of a 

line of transmission [18]. 

 
Fig. 2 Schematic depiction of the wave flowing through a 

transmission line [18]. 

In Fig. 1, the distributed resistance 𝑅 for conductors has 

been represented with series of resistor which expresses length 

per unit in terms of ohms. The inductance of distribution 𝐿 for 

the field of magnetic around the wire, self-inductance, etc.) has 

been represented with series of inductor (Henries of length for 

per unit). The capacitance 𝐶 has been illustrated with a capacitor 

(farads of length per unit) of the shunt that is between conductors 

and two in numbers. The conductance 𝐺 of dielectric materials 

that separate conductors has been represented with a resistor of a 

shunt between a wire of signal and a wire of return (siemens of 

length per unit). Resistor associated with the resistance  
1

𝐺
 ohms 

[19]-[21]. 

Table 1 Nomenclature of the symbols and notations. 

Symbol/Notation Name of the component/parameter 

𝑅 Distributed resistance for the conductors  

𝐿 The inductance of the distribution 

𝐶 
The capacitance of the dielectric 

materials 

𝐺 Conductance of the dielectric materials 

𝑣 Associated voltage in the cable 

𝑖 Associated current in the cable 

𝑥 
Distance corresponding to the end from 

where the cable sends 

𝑡 Time for current flow 

𝑝 Partial differential equation coefficients 

or the damping coefficients 𝑞 

𝑟 Transmission velocity 

𝑑𝑥 Increment in distance 

𝑣𝑥 
The first-order partial derivative of 𝑣 

concerning 𝑥 

 𝑣𝑡  
The first-order partial derivative of 𝑣 

concerning 𝑡 

 𝑣𝑥𝑥 
The second-order partial derivative of 𝑣 

concerning 𝑥 

 𝑣𝑡𝑡 
The second-order partial derivative of 𝑣 

concerning 𝑡 

Fig. 2 depicts the wave flowing from the rightward direction 

to downward through a lossless line of transmission where the 

black dot represents electrons. The field of electricity is shown 

by drawing arrows. The components with their role based on the 

animation can be visualized on the right side. 

The model that we have proposed is consisting of 

components of elements that are infinitesimal and with a series 

of infinite series of the infinite are depicted in Fig. 1. Also, we 

have specified their values by the length of the unit. Also, we 

treat the mentioned quantities as primary line constants so that 

they can be distinguished from secondary line constants, all of 

them are impedance of characteristic,  constant of 

propagation,  constant of attenuation, and constant of phase. 

They are the constants concerning current, voltage, and time. 

These can be treated as the frequency of functions that are not 

constants. 

https://en.wikipedia.org/wiki/Maxwell%27s_equations
https://en.wikipedia.org/wiki/Conductor_(electricity)
https://en.wikipedia.org/wiki/Electrical_resistance_and_conductance
https://en.wikipedia.org/wiki/Ohm
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Inductor
https://en.wikipedia.org/wiki/Siemens_(unit)
https://en.wikipedia.org/wiki/Electrical_resistance_and_conductance
https://en.wikipedia.org/wiki/Electrical_resistance_and_conductance
https://en.wikipedia.org/wiki/Primary_line_constants
https://en.wikipedia.org/wiki/Characteristic_impedance
https://en.wikipedia.org/wiki/Propagation_constant
https://en.wikipedia.org/wiki/Attenuation_constant
https://en.wikipedia.org/wiki/Phase_constant
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1.3 Role of Different Components 

The inductance 𝐿 happens interestingly that the electrons 

seem to have inertia, which means that the flow of current cannot 

be increased or decreased easily with a large inductance for any 

points given. Inductance with a large amount causes waves to 

move even much slowly, same as that wave can travel much 

slowly downward a rope with a heavy size than that of one with 

light size which can give it larger impedance (relatively current 

with a lower amount for identical voltage). Capacitance 𝐶 has 

control over the bunched-up electrons of bunched-up on the point 

that how much they repel each other, and also on the point of 

attraction of the spread-out electrons that how much they attract 

each other conversely. Attraction and repulsion for the 

capacitance of large value become less due to another line that 

usually contains the charge of opposite character and balances 

partly the force of attraction or repulsion. Alternatively, it can be 

said that the identical charge build-up causes less amount of 

voltage for the larger capacitance (i.e., the force of weak 

restoring), which causes waves to move slowly and give the 

impedance of a lower amount (i.e., the voltage of lower amount 

for the current of the same value). 𝑅 is corresponding to the 

resistances within lines whereas 𝐺 allows the current to flow to 

and from one line to another. Fig. 1 shows the lossless line of 

transmission, whereas both 𝑅 and 𝐺 taken to be zero. 

2 Numerical Investigations of the Attributes of 

Telegraph Equation 

In this section, numerical analysis of the behavior of the 

Telegraph equation is observed. Model setup along with the 

initialization of the parameters and the boundary conditions with 

the initial condition for the desired Telegraph equation is 

discussed.  

2.1 Model Setup 

We have assumed a wire piece with cable of the Telegraph 

has infinitesimal and also assumed it to be a circuit of electricity 

which is demonstrated in Fig. 3. Furthermore, we assumed this 

cable to be insulated imperfectly for which the existence of 

capacitance along with the leakage of current to the ground is 

observed [22]. 

 

Fig. 3 Schematic depiction of telegraphic transmission line 

involving leakage [23],[24]. 

In Fig. 3 assume that  𝑥 be the distance corresponding to the 

end from where the cable sends;  𝑣(𝑥, 𝑡) be the associated 

voltage with time 𝑡 for points; 𝑖(𝑥, 𝑡) be the associated current 

on the cable with time for points, also 𝑅  be the cable’s 

resistance;  𝐶 be the capacitance that is associated to the 

ground;  𝐿 be the cable’s inductance, and 𝐺 be the conductance 

that is associated to ground. 

Therefore, the voltage using the laws of Ohm across the 

resistor can be written as 

𝑣 = 𝑖𝑅. (1) 

Now, the drop of voltage across the inductor is the following 

𝑣 = 𝐿
𝑑𝑖

𝑑𝑡
. (2) 

Across the capacitor, the drop of voltage is given by  

𝑣 =
1

𝐶
∫ 𝑖𝑑𝑡. (3) 

Now, the voltage at the terminal 𝐵 equals the voltage of the 

terminal at 𝐴, subtraction the voltage drop along considered 

element 𝐴𝐵, therefore combining Eqs. (1), (2), and (3) together, 

it can be written as 

𝑣(𝑥 + 𝑑𝑥, 𝑡) − 𝑣(𝑥, 𝑡) = −[𝑅𝑑𝑥]𝑖 − [𝐿𝑑𝑥]𝜕𝑖

𝜕𝑡
. (4) 

Let 𝑑𝑥 → 0 then partial differentiation of Eq. (4) concerning 

𝑥 yields 

𝜕𝑣

𝜕𝑥
= −𝑅𝑖 − 𝐿

𝜕𝑖

𝜕𝑡
. (5) 

Likewise, the current at the terminal 𝐵 equals to current at 

the terminal 𝐴 subtraction current throughout the leakage to the 

ground, then it is found that 

𝑖(𝑥 + 𝑑𝑥, 𝑡) = 𝑖(𝑥, 𝑡) − [𝐺𝑑𝑥]𝑢 − 𝑖𝑐𝑑𝑥. (6) 

Now, the current throughout the capacitor can be written as 

  𝑖𝐶 = 𝐶
𝜕𝑢

𝜕𝑡
. (7) 

Now, differentiating Eqs. (4) and (7) concerning 𝑥 and  𝑡, 

respectively.  We eliminate the derivatives of 𝑣. Finally, we get 

the followings 

𝑟2
𝜕2𝑖

𝜕𝑥2
=

𝜕2𝑖

𝜕𝑡2
+ (𝑝 + 𝑞)

𝜕𝑖

𝜕𝑡
+ (𝑝𝑞)𝑖, (8) 

 

𝑟2
𝜕2𝑣

𝜕𝑥2
=

𝜕2𝑣

𝜕𝑡2
+ (𝑝 + 𝑞)

𝜕𝑣

𝜕𝑡
+ (𝑝𝑞)𝑣, (9) 

where 𝑝 =
𝐺

𝐶
 and 𝑞 =

𝑅

𝐿
 are positive constants and are 

known as damping coefficients, 𝑟 =
1

√𝐿𝐶
. 

Equations (8) and (9) comprise the aimed one-dimensional 

hyperbolic second-order Telegraph equation [25]. 

2.2 Parameter Setup 

We can use this model of the Telegraph equation to 

investigate how pulses of voltage are transmitted through the 

Telegraph wires. This model of the Telegraph equation can 

model mixtures between the diffusion and the propagation of a 

wave that can introduce the term which causes the standard heat 

or equation of transport of mass for effects of finite velocity [26]. 

This example is modeled for a Telegraph wire of a small section 

and it involves the study of the pulse’s voltage while it moves 

along it. The results that cause the varying damping coefficients 

are sketched with the shape of the pulse and are provided by a 

parametric sweep. 

It is very simple to define the model where the geometry 

consists of a line of length 1 which is one-dimensional. The 
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initial condition is taken as a voltage distribution that is bell-

shaped and thus the pulse is modeled. The conditions 

corresponding to the boundary define flux at both ends for the 

section of the wire and these conditions allow freely varying the 

voltage. 

The Telegraph equation (Eq. (9)) can be written in a more 

compact form as 

𝑣𝑡𝑡 + (𝑝 + 𝑞)𝑣𝑡 + 𝑝𝑞𝑣 = 𝑟2𝑣𝑥𝑥 . (10) 

Here, 𝑣, the dependent variable denotes the voltage, whereas 

𝑥, the independent variable denotes the distance from the initial 

position of the Telegraph wire. The model has been initiated for 

some fixed parameters that are for  𝑝 = 0.5 = 𝑞 and 𝑟 = 1. 

2.3 Boundary Conditions and Initial Condition  

At both ends, the boundary conditions are Neumann 

conditions and are also homogeneous as 

𝑣𝑥(𝑡, 0) = 0,   𝑣𝑥(𝑡, 1) = 0. (11) 

The initial condition consists of the following equations 

which are describing a bell-shaped pulse and has the highest 

point at 0.2 and also a base width of 0.4. 

𝑣(0, 𝑥) = 𝑒−3(
𝑥

0.2
−1)

2

,  𝑣𝑡(0, 𝑥) = 0. (12) 

3 Results and Discussion 

This section investigates the important mathematical 

properties of the Telegraph equation. The following is aimed to 

provide insight into the behavior of the Telegraph equation. In 

particular, we analyze the characteristic structure of the 

Telegraph equation. We will interpret graphically in one-

dimensional space. Here, we applied COMSOL Multiphysics 

(version 4.3) for the numerical computation in a Windows 

machine having an Intel i5-6200U CPU with 2.30 GHz clock 

speed, 2 cores each, and 8 GB of total RAM. 

We have studied the effect of the variations of the partial 

differential equation coefficients (damping coefficients) 𝑝 and 𝑞, 

and the transmission velocity 𝑟 on the pulse’s shape (length vs 

voltage graph) for several discrete time slots. In Eq. (10), it is 

observed that the co-efficient of voltage and its rate of change 

about the time both are symmetric. They exhibit the variations 

attributes for the changes of the 𝑝 + 𝑞 and 𝑝𝑞, not the individual 

changes of 𝑝 and/or 𝑞. But there are significant variations found 

for the changes in transmission velocity 𝑟 over time specified 

time slots.  

In this section, we are investigating the effect of the changes 

in the transmission velocity 𝑟 for some discrete time slots with 

some particularized values of damping coefficients 𝑝 and 𝑞. We 

are exploring the deformation of the pulse shape of the Telegraph 

equation due to the desired variations.  

In the following case studies, we are scrutinizing the 

variation of voltage (𝑣) for the damping coefficients 𝑝 and 𝑞, 

ranging 𝑝 + 𝑞 = 1, 2, 3, 4 for the transmission velocity 𝑟 =
1, 2, 3 and discrete time slots ranging 𝑡 = 0.25, 0.5, 0.75, 1. 

These observations are attained from numerical simulations and 

analyzed graphically.

 

  
(a) Transmission velocity 𝑟 = 1 and time 𝑡 = 0.25 (b) Transmission velocity 𝑟 = 1 and time 𝑡 = 0.5 

  
(c) Transmission velocity 𝑟 = 1 and time 𝑡 = 0.75 (d) Transmission velocity 𝑟 = 1 and time 𝑡 = 1 

Fig. 4 Different pulse shape for 𝑟 = 1 and 𝑡 = 0.25, 0.5, 0.75, 1. 
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3.1 Case-1: Transmission Velocity 𝑟 = 1 and Time Slot 𝑡 =
0.25, 0.5, 0.75, 1 

We have investigated the voltage variation for the damping 

factors i.e.  𝑝 + 𝑞, ranging from 1 to 4 for the transmission 

velocity 𝑟 = 1, and time slots ranging from 𝑡 = 0.25 to 𝑡 = 1. 

Our curiosity was to observe how the changes are increasingly 

occurring at several times for the same value of 𝑟 and 

intentionally allowed the damping factor to vary. The 

consequences observed are numerically sketched in Fig. 4. 

In Fig. 4(a), we have depicted the pulse shape for a specific 

time slot 𝑡 = 0.25,  𝑟 = 1, the damping coefficients starting 

from  𝑝 = 0.5 = 𝑞 to 𝑝 = 2 = 𝑞 with evenly spaced and 

enhanced. A significant variation of decrease of pulse height was 

observed at nearly quarter length of the propagation of the 

transmission. The increase in damping coefficients caused the 

pulse to increase again for a small length of the transmission line 

and then with a dramatic decrease in the height of the pulse 

height.  

The increase of time for the same transmission velocity and 

the gradual variation of 𝑝 and 𝑞 causes an interesting observation 

as shown in Fig. 4(b). For the time slot 𝑡 = 0.5, we observed a 

symmetric up and down of the pulse with the symmetric 

variation in between the damping factors themselves. A smooth 

variation with the fashion of increase and decrease of pulse with 

the propagation of the transmission makes a sensation in the 

observation. Exactly at the middle of the propagation of the 

length of the wire, there is a significant variation of the down of 

the pulse, and an evenly spaced increased pulse was observed. 

The pulse has applied the same ratio of height for the varying 

damping factors. A smooth sequence of observations enhanced 

the curiosity to increase the time with the fashion of varying 

damping coefficients and with the fixed transmission velocity. 

With the enhancement of time, we observed that the 

deformations are quickly occurring in the pulse shape. 

Transmission velocity 𝑟 = 1 and time 𝑡 = 0.75 with the gradual 

enhancement of damping coefficients in an evenly spaced 

manner causes deformation pronounced significantly at the 

initial point of the graph. It seemed that there is a coincidence 

with more than two pulse heights coming from different damping 

parameters and as the transmission propagates along the wire, the 

pulse height starts increasing at nearly the middle of the length. 

The height then went down again and seemed to intersect at a 

certain point. And the interesting matter happens later when the 

height of the pulse increases to a greater extent with the varying 

parameters of the values of 𝑝 and 𝑞. These variations and insight 

attributes have been analyzed in Fig. 4(c). 

While quite eye-catching variations were noticed in Fig. 

4(d) for the time slot 𝑡 = 1. Here, the deformation is observed at 

a quite distance length of the transmission. We interestingly 

observed the very nearest coincidence of the propagation of the 

transmission of all the damping factors although were varying at 

a value of 𝑝 = 0.5 = 𝑞 for the fixed time slot and fixed 

transmission velocity up to a very wide length of the wire. The 

pulse increased later maintaining a ratio among the factors 

occurring for different curves and then damped down again.

 

  
(a) Transmission velocity 𝑟 = 2 and time 𝑡 = 0.25 (b) Transmission velocity 𝑟 = 2 and time 𝑡 = 0.5 

  
(c) Transmission velocity 𝑟 = 2 and time 𝑡 = 0.75 (d) Transmission velocity 𝑟 = 2 and time 𝑡 = 1 

Fig. 5 Different pulse shape for 𝑟 = 2 and 𝑡 = 0.25, 0.5, 0.75, 1. 
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3.2 Case-2: Transmission Velocity 𝑟 = 2 and Time Slot 𝑡 =
0.25, 0.5, 0.75, 1 

Our first observation for the time slot 𝑡 = 0.25 for the 

earlier stated case-2 parameters variation is found in Fig. 5(a). A 

massive variation was observed at the beginning. Pulses 

emerging at a specific ratio with increasing pattern cause 

damping up symmetric behave and similar damping down 

symmetric exactly at the middle length propagation of the wire. 

It produced a similar increasing smooth pulse later with the 

propagation of time. A massive sensation of the pulse was 

observed in this case. A variation quite different from Fig. 5(a) is 

observed in Fig. 5(b) due to the increase of time and specified 

time slot 𝑡 = 0.5. A constant pulse height happened more than 

halfway through propagation. A sudden and significant pulse 

height was observed for the damping varying factors later and 

damping down height smoothly. At time slot 𝑡 = 0.75,  a 

comprehensive observation followed in Fig. 5(c). There 

observed a symmetry shape of pulse height in the neighborhood 

of the middle length of propagation and the converging of the 

height at a point when the transmission propagates the half-wire 

length. The smoothness of the curve was also observed more 

soundly. Fig. 5(d) depicts the pulse shape for case-2 for the time 

slot 𝑡 = 1. We observed a scattered shape at the beginning and a 

coincidence emerging from the half-length propagation.  

3.3 Case-3: Transmission Velocity 𝑟 = 3 and Time Slot 𝑡 =
0.25, 0.50, 0.75, 1.00 

Likewise, in case-1 and case-2, for the fixed time slots and 

variation of damping coefficients with a high velocity of 

transmission 𝑟 = 3 was numerically observed and is described 

in Fig. 6. The increase of transmission velocity and a gradual 

increase of damping factors occurring with the desired time slots 

caused the scattered pulse height as shown in Fig. 6. It is kept 

mild for 𝑡 = 0.25 and 𝑡 = 0.5, and then a more scattering pulse 

heigh is found for 𝑡 = 0.75. The highly scattering pulse height 

is seen in Fig. 6(d) at the propagation for the time slot 𝑡 = 1. An 

interesting matter happened in the time slot 𝑡 = 0.5 as shown in 

Fig. 6(b), and a scatter pulse with a smooth and symmetric 

deformation is observed. 

We curiously continued the simulation for the increasing 

time and observed the pulse height was scattering significantly 

with the significant increase of the damping factors along with 

the desired time slots for high transmission velocity. The 

scattering phenomenon is widened with time.  

Now, it is evident that the transmission velocity plays a 

significant role in the analysis of variation of damping 

coefficients over the pulse height for the propagation along the 

Telegraph wire. 

 

 

  
(a) Transmission velocity 𝑟 = 3 and time 𝑡 = 0.25 (b) Transmission velocity 𝑟 = 3 and time 𝑡 = 0.5 

  
(c) Transmission velocity 𝑟 = 3 and time 𝑡 = 0.75 (d) Transmission velocity 𝑟 = 3 and time 𝑡 = 1 

Fig. 6 Different pulse shape for 𝑟 = 3 and 𝑡 = 0.25, 0.5, 0.75, 1. 
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4 Findings 

A comprehensive numeral simulation of the Telegraph 

equation based on the variations in the corresponding parameters 

resulted in some momentous outcomes. The damping 

coefficients reflect the pulse height up and down with their 

gradual shifting points. The time effects for stretching and 

compression of the pulses from left and right and vice versa for 

the regular shape of the pulse with lower transmission velocity. 

The effect of transmission velocity causes the pulses to regular 

for their smaller values and a quite irregular shape with the 

increasing values and finally, a scattered occurring while the 

transmission velocity reaches 𝑟 = 3. For 𝑟 > 3, a very scattered 

and complete irregular shape of the pulse heights will be 

forthcoming. Of all the reflections played over the pulse height, 

the effect of transmission velocity is quite remarkable and 

sounding.  

5 Comparative Discussion 

Since we comprised the current work with an unorthodox 

vision, it is arduous to compare it with the other works. Most of 

the works referenced in the introductory section are analytical or 

semi-analytical, some of the works include numerical 

simulations with so-called numeric calculations and manual or 

user-defined sketching techniques. In contrast, the approach 

implemented in this work is completely machine-based 

simulations incorporating automated graphing integrity with a 

programmable interface, which is computationally efficient. As 

we have aimed to investigate the impact of parametric variations 

on the pulse height (associated voltage), no solution function of 

explicit evaluation is required. So, the numerical approach 

embedded in this work is efficient for time-saving ability, which 

can be applied with the minimum memory requirement of the 

computing machine. Moreover, for different initial and boundary 

conditions, analytical methods need to be restarted, on the 

contrary, Comsol Multiphysics-based numerical simulations 

need to change the conditions expediently. So, the Telegraph 

equations with volatile features can be efficiently analyzed with 

the numerical simulations discussed in this work.     

6 Conclusion 

In this paper, we have investigated the parametric behavior 

of the Telegraph equation. The numerical solution has been 

manipulated using COMSOL Multiphysics. We analyzed a 

Telegraph wire of a small section and studied the pulse of voltage 

while moving along it. We used the parametric sweep method 

that gives results and shows the shape of the pulse for varying 

damping coefficients over several discrete time slots. We 

observed the changes occurring in the variation of transmission 

velocity. We allowed the damping coefficients to vary and kept 

the transmission velocity remain fixed for some specific cases 

then gradually increased the time slots. Then we allowed the 

transmission velocity to increase and kept it fixed as before and 

allowed the parameters 𝑝 and 𝑞 increasing and observed the 

changes at different time slots. Although the damping 

coefficients increased at several discrete time slots, the pulse 

height was smooth, symmetric, and regular for the smaller 

transmission velocity, for instance, 𝑟 = 1 and 𝑟 = 2. But the 

greater transmission velocity caused the pulse height to be 

irregular and highly scattered.  A dramatic change was observed 

in the pulse shape for 𝑟 = 3 which was throughout the 

transmission line. It is observed that pulse height is smooth, with 

a regular up and down for the smaller values of 𝑟 irrespective of 

the enhancement of the damping coefficients at the different time 

slots. The scattered shape of the pulse height appears as the 

transmission velocity increases irrespective of the enhancement 

of the damping coefficients at the different time slots. We hope 

the parametric behavioral observations are intended to be used in 

our further research.  
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