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ABSTRACT   

The numerical solution of Navier-Stokes (N-S) equations has been found useful in various disciplines during its development, 

especially in recent years. However, a large-eddy simulation method has been developed to model the subgrid-scale dissipation rate by 

closing the Navier-Stokes equations. Because the instantaneous and time-averaged statistic characteristics of the subgrid-scale turbulent 

kinetic energy and dissipation have been studied by large eddy simulation. The purpose of this study is to check the statistical and 

machine learning of the subgrid-scale energy dissipation. As we know that the current turbulence theory states that the vortex stretching 

mechanism transports energy from large to small scales and leads to a high energy dissipation rate in a turbulent flow. Hence, a vortex-

stretching-based subgrid-scale model is considered regarding the square of the velocity gradient to detect the playing role of the vortex 

stretching mechanism. The study in this article has shown a two-step process. Considering a posteriori statistic of the velocity gradient 

is analyzed through higher-order statistics and joint probability density function. Secondly, a machine learning approach is studied on 

the same data. The results of the vortex-stretching-based subgrid-scale model are then compared with the other two dynamic subgrid 

models, such as the localized dynamic kinetic energy equation model and the TKE-based Deardorff model. The results suggest that the 

vortex-stretching-based model can detect the significant subgrid-scale dissipation of small-scale motions and predict satisfactory 

turbulence statistics of the velocity gradient tensor. 

Keywords: Navier-Stokes Equations, SGS Models, Vortex Stretching, Subgrid-scale Energy, Subgrid-scale Dissipation, Statistical 

and Machine Learning, Correlation, JPDF, Gradient Decent Algorithm. 
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1 Introduction   

Over the last few years, the large eddy simulation (LES) 

technique has increased in popularity, mainly because of 

advancements in computational resources both in hardware and 

algorithm. More specifically, recent algorithmic progress in 

iterative methods, such as multigrid and Krylov solvers on the 

multiprocessor computing framework, have enabled the LES 

study of complex engineering flow problems. The main idea of 

LES is to solve the Navier-Stokes equations (NSE) using a 

computationally affordable three-dimensional fine grid. It is 

generally expected that the numerical solution of NSE would 

account for about 80% of the dominant degrees of freedom of 

turbulence. The remaining 20% of the information on turbulence 

is predicted based on the available data from a previous time step 

through a process called subgrid-scale (SGS) modeling. 

Smagorinsky initially introduced this idea for real-time weather 

prediction [1]. Over the years, LES has paved the way to solve 

many complex engineering problems. More recently, several 

investigators are advancing LES so that a subgrid model can be 

built upon available data history. 

Another interesting idea of the fluid dynamics research 

community is to understand whether LES can provide 

appropriate relevant data that may be used to develop simplified 

models for studying various complex engineering problems. 

Turbulence is a high-dimensional dynamical system. It exhibits 

an average cascade of energy from large to small scales. The 

resolution large-eddy simulation (LES) approach utilizes subgrid 

models to understand turbulence energy cascade, which is saving 

millions of dollars for the automobile and aviation industry. Until 

recently, following the pioneering work of Taylor [1], there has 

been a scope on the dominant modern view of whether vortex 

stretching drives the energy from the largest to the smallest scales 

of motion. No one has been reached explicitly on how to engage 

vortex stretching in subgrid models of LES properly. In contrast, 

Sagaut & Cambon argue that vortex stretching opposes energy 

dissipation [3],[4]. They considered the Karman-Harwoth 

equation [5] and the interpretation that the energy flux from large 

to small scale would balance the viscous dissipation. Indeed, 

these findings lead to creating an option for more studies on how 

vortex stretching reduces dissipation while at the same time 

acting for the down-scale cascade of energy (e.g., see [4],[8]).  

The objective of the present investigation is twofold. First, a 

parallelized LES code is developed that engages vortex 

stretching in a subgrid model [6]. To estimate whether vortex 

stretching drives the energy cascade, we consider high-resolution 

LES data and compare higher-order statistics of isotropic 

turbulence, and the velocity gradient tensor is used to investigate 

many universal characteristics by using joint probability density 

function (JPDF) regarding three subgrid-scale models. In the 

second part, the performance of SGS models has been studied 

through statistical and machine learning approaches.  

This article is rearranged sequentially. In section 2, the 

simulation methodology has been discussed. Initial turbulent 

flow is discussed in section 3. Validation strategies are shown in 

section 4. Results of SGS models are shown in section 5. In the 

result section, models are compared regarding their performance. 

Finally, a conclusion and future scope have been drawn in 

section 6. 

2 Simulation Methodology 

In this article, instead of using explicit filtering operation, 

the second order finite volume discretization of the flow equation 

is considered the numerical mesh as an implicit filter. In this 

filter, the turbulent scales smaller than the grid mesh are known 
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as unresolved scales, while greater than grid size is called the 

resolved scales. It is like the operation of a box filter when the 

filter width is equal to the grid spacing [5],[7]. 

Now, the filtered equations of continuity and Navier-Stokes 

equation for incompressible flow can be written as: 

𝜕𝑢𝑖̅

𝜕𝑥𝑖

= 0 (1) 

𝜕𝑢𝑖̅̅ ̅

𝜕𝑡
 + 𝑢𝑗̅ 

𝜕𝑢𝑖̅̅ ̅

𝜕𝑥𝑗
 = - 

1

𝜌
 

𝜕𝑃̅

𝜕𝑥𝑖
 + 𝜗 

𝜕2𝑢𝑖̅̅ ̅

𝜕𝑥𝑖
2 - 

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
 (2) 

Here, 𝜏𝑖𝑗 is the subgrid-scale stresses, where 𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ −

 𝑢𝑖̅𝑢𝑗̅. Most of the subgrid-scale models are based on the eddy-

viscosity model because of the Boussinesq hypothesis. The 

models can compute the deviatoric part of the SGS stress as, 

𝜏𝑖𝑗 −
1

3
 𝜏𝑘𝑘𝛿𝑖𝑗  = -2𝜗𝜏𝑆𝑖𝑗 (3) 

Eq. (3) is related to SGS stresses to the large-scale strain rate 

tensor 𝑆𝑖𝑗 , which is defined by  𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖̅̅ ̅

𝜕𝑥𝑗
+

𝜕𝑢𝑗̅̅̅̅

𝜕𝑥𝑖
) of the 

resolved turbulence, 𝛿𝑖𝑗 is the Kronecker delta, and 𝜗𝜏 is a 

subgrid-scale viscosity.  

The SGS models in this article are the Wall-Adapting 

viscosity model (SGS-A), localized dynamic kinetic energy 

equation model (SGS-B), and kinetic energy-based Deardorff 

model (SGS-C). A brief mathematical detail of three dynamic 

SGS models is described below. 

2.1 Wall-Adapting Viscosity Model (SGS-A) 

The eddy viscosity is evaluated in this subgrid-scale model 

by using the square of the velocity gradient tensor [6]. The 

turbulent kinetic energy of SGS-A model is estimated by, 

𝑘𝑠𝑔𝑠 = (∆𝑙𝑒𝑠)2
(𝑆𝑖𝑗

𝑑 𝑆𝑖𝑗
𝑑 )

3 2⁄

(𝑆𝑖𝑗𝑆𝑖𝑗)
5 2⁄

+ (𝑆𝑖𝑗
𝑑 𝑆𝑖𝑗

𝑑)
5 4⁄

 

Where, ∆𝑙𝑒𝑠   is the computational grid size. Now, the eddy 

viscosity of SGS-A model is defined as, 

𝜗𝜏 = 𝐶𝑤∆𝑙𝑒𝑠√𝑘𝑠𝑔𝑠 (4) 

The term 𝑆𝑖𝑗
𝑑  is a deviatoric symmetric part of the square of 

the velocity gradient tensor, known as 𝑆𝑖𝑗
𝑑 =

1

2
(𝐺𝑖𝑗 + 𝐺𝑖𝑗) −

1

3
𝛿𝑖𝑗𝐺𝑖𝑖 . Here, 𝐺𝑖𝑗 is the velocity gradient tensor. However, the 

term 𝑆𝑖𝑗
𝑑 𝑆𝑖𝑗

𝑑  is related to vortex stretching and the second invariant 

of the velocity gradient tensor. The term 𝑆𝑖𝑗
𝑑 𝑆𝑖𝑗

𝑑 =
1

2
|𝑆𝜔| −

1

3
𝑄𝐺

2  

can detect turbulent structures by the rotation rate, strain rate, and 

vortex stretching rate, which indicates that it adjusts the value of 

𝜗𝜏 dynamically on the strength of the vortex stretching rate [8]. 

Here, 𝑆𝜔 and 𝑄𝐺  are denoted by vortex stretching and second 

invariant of the velocity gradient tensor. So, this SGS model is a 

vortex-stretching-based model, where 𝐶𝑤 = 0.325 for this 

study. 

2.2 Dynamic k-equation Model (SGS-B) 

The localized dynamic kinetic energy model was proposed 

by Kim et. al., which is a kind of similar concept to the dynamic 

Smagorinsky model [9]. In this model, the eddy viscosity is 

calculated as 𝜗𝜏 = 𝐶𝑘𝑘𝑠𝑔𝑠
1 2⁄

∆𝑙𝑒𝑠. Here 𝐶𝑘 is an adjustable model 

constant, which is calculated dynamically in this subgrid-scale 

model. In this SGS model, the model coefficients are computed 

by setting an additional test filter ∆̃= 2∆𝑙𝑒𝑠 [10]. It is worth 

mentioning that the local variation of subgrid-scale energy 

dissipation can be accounted for in the localized dynamic kinetic 

energy equation via the dynamic variation of 𝐶𝑘, which is 

important in many engineering applications. 

2.3 k-equation Model (SGS-C) 

In the turbulent kinetic energy (TKE) model, the turbulent 

kinetic energy is obtained by solving the following transport 

equation [11].  

𝜕𝑘𝑠𝑔𝑠

𝜕𝑡
+ 𝑢𝑗̅  

𝜕𝑘𝑠𝑔𝑠

𝜕𝑥𝑗

=  − 𝜏𝑖𝑗𝑆𝑖𝑗 − 𝐶𝑒  
𝑘𝑠𝑔𝑠

3
2

∆𝑙𝑒𝑠

 + 
𝜕

𝜕𝑥𝑗

 (𝜗𝜏  
𝜕𝑘𝑠𝑔𝑠

𝜕𝑥𝑗

) (5) 

Here, 𝑘𝑠𝑔𝑠 is the turbulent kinetic energy. The eddy viscosity 

𝜗𝜏 is estimated by using 𝑘𝑠𝑔𝑠 value from Eq. (5) as 𝜗𝜏 =

𝐶𝑘𝑘𝑠𝑔𝑠
1 2⁄

∆𝑙𝑒𝑠. Here, the model constant 𝐶𝑘 = 0.094 and the 

dissipation constant 𝐶𝑒 = 1.048 are fixed. This subgrid-scale 

model is important for LES of atmospheric turbulence. 

3 Turbulent Flow Setup 

The initialization of the turbulent flow field is based on the 

kinematic simulation of isotropic turbulence, which is 

incompressible and consistent with second-order statistics. The 

given velocity field is generated in the Fourier space based on the 

following energy spectrum, 

𝐸(𝑘) = 𝐸𝑎
𝑘4

𝑘0
4 (1 +

𝑘2

𝑘0
2)

−17

6
𝑒𝑥𝑝

−2
𝑘2

𝑘𝑛
2

  (6) 

Here, 𝐸𝑎 is amplitude and 𝑘 is the wave number. 𝑘0 and 𝑘𝑛 

are two wave numbers that control the distribution of 𝐸(𝑘). 

Therefore, we have the kinetic energy 𝐸 =
1

2
∫ 𝑢2𝑑𝑥

Ω
=

∫ 𝐸(𝑘)𝑑𝑘
∞

0
. Thus, we can choose the values of 𝐸𝑎, 𝑘0 and 𝑘𝑛 to 

ensure a distribution of 𝐸. The initial wave number is taken 𝑘0 =
5 in Eq. (6) in such a way that the initial velocity would be 𝑢0 =
10 m/s, and the Reynolds number 𝑅𝑒 = 5 × 105 in physical 

space. In the present LES simulations, the N-S equations are 

solved in a cubic periodic domain [0, 2𝜋]3, which is partitioned 

into 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 𝑁, here 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 128 nodes in 

each direction. The mesh size is ∆𝑙𝑒𝑠=
2𝜋

𝑁
.  

To analyze the relationship between the resolved strain 

𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖̅̅ ̅

𝜕𝑥𝑗
+

𝜕𝑢𝑗̅̅̅̅

𝜕𝑥𝑖
)  and the subfilter scale stress 𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ −

 𝑢𝑖̅𝑢𝑗̅, this article has implemented three subgrid models, such as 

SGS-A, SGS-B, and SGS-C within an in-house LES code, which 

is written in C++ and parallelized via the message passing 

interface (MPI) library through OpenFOAM. 

4 Validation Strategies 

In this research, the vortex-stretching-based subgrid model 

SGS-A is validated with the other two subgrid models, say SGS-

B and SGS-C. The validation processes are done by the below 

strategies, 

The subgrid-scale production of turbulence −𝜏𝑖𝑗𝑆𝑖𝑗 must be 

correlated with the transfer 𝜏𝑖𝑗𝑆𝑖𝑗  from grid-scale to subgrid-

scale. It suggests that the transfer of energy is equal to the 

dissipation (loss) of energy on a subgrid scale. 

Joint probability density function (JPDF) and corresponding 

statistics of the velocity gradient tensor. 

Examine the performance of the three subgrid-scale models 

through a machine learning algorithm. 
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(a) SGS-A 

 

(b) SGS-B 

 

(c) SGS-C 

Fig. 1 Plots of production and dissipation of turbulence among 

the SGS models 

5 Result Analyses 

5.1 Subgrid-Scale Stress, Resolved Rate of Strain, and 

Vortex Stretching 

Time series of the rate of resolved energy 
𝑑𝐸

𝑑𝑡
 is found to be 

well correlated with the energy flux < 𝜏𝑖𝑗𝑆𝑖𝑗 >; Fig. 1 supports 

the theoretical interpretation regarding the energy flux and 

viscous dissipation [8]. Indeed, the energy is transferred by large 

eddies to the subgrid-scale, which is dissipated at a rate of 

subgrid-scale dissipation, 𝜀𝑠𝑔𝑠= 2𝜗𝜏||𝑆||. It is worth mentioning 

that the most important requirement of turbulence modeling on 

the statistics of subfilter scale stress 𝜏𝑖𝑗  is to reproduce the 

evolution of turbulence kinetic energy [12]. Thus, the 

consideration of vortex stretching should correctly reproduce the 

correlation of a subgrid model 𝜏𝑖𝑗
𝑠𝑔𝑠

with the strain-rate tensor, 

i.e., < 𝜏𝑖𝑗
𝑠𝑔𝑠

𝑆𝑖𝑗 > =  < 𝜏𝑖𝑗𝑆𝑖𝑗>. A primary observation is that the 

consideration of the square of the velocity gradient tensor is an 

effective way of enforcing scale-adaptivity in 𝜗𝜏 via vortex 

stretching mechanism. If a vortex tube is stretched, the eddy 

viscosity grows locally, thereby transferring the energy to the 

subgrid scale. 

5.2 Joint Probability Density Function (JPDF) of SGS 

Models 

In this section, invariants of velocity gradient tensor of 

isotropic turbulence in LES are analyzed statistically by the 

proposed three subgrid-scale models. An advanced data-

analytics approach is considered to observe some hidden flow 

topology in subgrid models. Using this approach, five invariants 

are analyzed to describe the mechanism and dynamics of 

turbulent flow. Because the invariants are significantly important 

in the context of visualization of the various flow patterns or 

coherent structures [13] and detecting the vortical structure of 

turbulent flow [14]. The datasets of invariants are generated at s 

fixed dimensionless eddy turn over time, 
𝑡

𝑇
= 1. Using the 

datasets, JPDF of such invariants have been visualized to 

illustrate the features of small-scale statistics and relevant 

mechanisms of large energy-containing scales. 

The invariants can define the arbitrary points of flow 

topology by deploying the eigenvalues of the velocity gradient 

tensor 𝐺 [15],[16]. Hence, the characteristics equation of the 

velocity gradient tensor is, 

𝜆𝑖
3 + 𝑃𝐺𝜆𝑖

2 + 𝑄𝐺𝜆𝑖 + 𝑅𝐺 = 0 (7) 

Here, 𝜆𝑖 is eigenvalues. 𝑃𝐺 , 𝑄𝐺 , and 𝑅𝐺 are the first, second, 

and third invariants of 𝐺, respectively. However, for 

incompressible flow, 𝑃𝐺 = 0. 

The JPDF describes the jointly random variables on a 

probability space. In this article, The JPDF is studied through: (i) 

between the second invariant (𝑄𝐺) and third invariant (𝑅𝐺), (ii) 

between the strain rate of the second invariant (𝑄𝑆) and the strain 

rate of the third invariant (𝑅𝑆), and (iii) between second invariant 

rate (-𝑄𝑆 ) and rotation rate (𝑅𝑆).  

Now, Mathematical formulas of such invariants are shown 

here. Using the strain rate (𝑆𝑖𝑗) and rotation rate (𝑅𝑖𝑗), the second 

and third invariants of 𝐺 are obtained by, 

𝑄𝐺 =
−1

2
(𝑆𝑖𝑗𝑆𝑖𝑗 − 𝑅𝑖𝑗𝑅𝑖𝑗) (8) 

𝑅𝐺 =
−1

3
(𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖 +

3

4
𝜔𝑖𝜔𝑗𝑆𝑖𝑗) (9) 

The strain rate of the tensor of second and third invariants 

are obtained by, 

𝑄𝑆 =
−1

2
(𝑆𝑖𝑗𝑆𝑖𝑗) (10) 

𝑅𝐺 =
−1

3
(𝑆𝑖𝑗𝑆𝑗𝑘𝑆𝑘𝑖) (11) 

Finally, the second invariant rotation rate is getting by, 

𝑄𝑅 =
1

2
(𝑅𝑖𝑗𝑅𝑖𝑗) (12) 
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(a) SGS-A 

 

(b) SGS-B 

 

(c) SGS-C 

Fig. 2 The JPDF between the second invariant (𝑄𝐺) and third 

invariant (𝑅𝐺) 

 

(a) SGS-A 

 

(b) SGS-B 

 

(c) SGS-C 

Fig. 3 The JPDF between the second invariant of strain rate 

(𝑄𝑆) and third invariant of strain rate (𝑅𝑆) 
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The JPDF map between the second invariant (𝑄𝐺) and third 

invariant (𝑅𝐺), and topological classification of local flow fields 

are shown in Fig. 2, see more detailed information [8],[15],[16].  

The region of Fig. 2 describe as, (i) the region 𝑅𝐺 < 0 and 𝑄𝐺 >
0 is associated with vortex stretching, (ii) the region 𝑅𝐺 > 0 and 

𝑄𝐺 > 0 is associated with vortex compression, (iii) the region 

𝑅𝐺 < 0 and 𝑄𝐺 < 0 is associated with tube structures, and (iv) 

the region 𝑅𝐺 > 0 and 𝑄𝐺 > 0 is associated with sheetlike 

structures. In Fig. 2, two important characteristic features have 

been observed in the SGS models. 

First, a trend of teardrop shape appears in SGS models. In 

this region, the fluid flow is controlled by the sheetlike structures, 

which indicates that the total strain rate 𝑆𝑖𝑗𝑆𝑖𝑗  is increased over 

weak vortex stretching. It also indicates a universal feature of 

turbulence [7],[8]. Secondly, the bulk of data is presented in the 

upper left quadrant showing intense vortex stretching, 𝜔𝑖𝜔𝑗𝑆𝑖𝑗 >

0 in the subgrid-scale models. Hence, the 𝑄𝐺  and 𝑅𝐺 map of SGS 

models indicates that the 𝜔𝑖𝜔𝑗𝑆𝑖𝑗 and 𝑆𝑖𝑗𝑆𝑖𝑗 are playing a role 

for the energy cascade. 

The JPDF map between the second invariant of strain rate 

(𝑄𝑆) and third invariant of strain rate (𝑅𝑆), and topological 

classification of local flow fields are shown in Fig. 3, see more 

detailed information [8],[18]. In order to analyze the geometry of 

the straining motion of the fluid elements, the JPDF of the second 

invariant of strain rate (𝑄𝑆) and third invariant of strain rate (𝑅𝑆) 

of the velocity gradient tensor is studied, see Eqs. (10) and (11). 

All the three SGS models have shown similar behaviour in which 

the flow topology for isotropic turbulent flow field is 

predominated by sheetlike structures. Finally, the region 𝑅𝑆 > 0 

and 𝑄𝑆 < 0 indicates the intense kinetic energy dissipation in 

subgrid models, see Fig. 3. 

The JPDF map between the second invariant of strain rate 

(−𝑄𝑆) and second invariant of rotation rate (𝑄𝑤) is shown in Fig. 

4. It is an important investigation to demonstrate the dissipation 

of kinetic energy through rotation rate and straining rate of 𝐺. In 

Fig. 4, the vertical axis −𝑄𝑆 is associated to the dissipation of 

kinetic energy [17],[18]. Thus, the points near the axis −𝑄𝑆 is 

dominated by the straining motion over weak enstropy. 

However, the horizontal axis 𝑄𝑤is linked to high enstrophy over 

few dissipations. The most interesting physical information is 

presented by the diagonal axis, −𝑄𝑆 = 𝑄𝑤 , where it 

demonstrates the points of flow field associated with the high 

enstropy and high dissipation [8]. As we can see in Fig. 4, a 

strong correlation between dissipation and enstropy along the 

diagonal line is presented in SGS models. 

5.3 Performance between Subgrid-Scale Models  

The correlation is a statistical summary of the relationship 

between the variables, see for information [19]. This section will 

focus how on studying the correlation between subgrid-scale 

model variables. The velocity component 𝑈𝑥 of a cell value at 
𝑡

𝑇
= 1 eddy turn-over time of the SGS models is considered for 

this purpose. Approximately 700 samples of 𝑈𝑥 are studied in 

this article see Fig. 5. Specifically, this study will examine how 

much the velocity component 𝑈𝑥 of SGS-A model is associated 

with 𝑈𝑥 of SGS-B and SGS-C models. If we compare the 𝑈𝑥 of 

SGS-A model with the SGS-B and SGS-C models, we get almost 

similar performance among the subgrid models, see Fig. 6.  

 

 

(a) SGS-A 

 

(b) SGS-B 

 

(c) SGS-C  

Fig. 4 The JPDF between the second invariant of strain rate 

(−𝑄𝑆) and second invariant of rotation rate (𝑄𝑤) 
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Fig. 5 Cell value of 𝑈𝑥 at 
𝑡

𝑇
= 1 eddy turn-over time of the SGS 

models. 

Before examining the correlation between the SGS models, 

this article shows some general statistics and covariance of 𝑈𝑥 

datasets of the SGS models. Since the covariance (COV) 

between SGS-A and SGS-B is 10.70 and between SGS-A and 

SGS-C is 11.03. These are the positive covariance; see Table 1. 

It indicates that the variables change in the same direction as we 

expect.  

Table 1 Comparing the statistical performance of SGS models 

for the 𝑈𝑥 component. 

Models Mean 25% 50% 75% STD COV 

SGS-A -1.36 -3.82 -1.40 0.82 3.46 - 

SGS-B -1.18 -3.63 -1.82 0.86 3.27 - 

SGS-C -1.25 -3.69 -1.78 0.96 3.55 - 

SGS-A v/s 

SGS-B 
- - - - - 10.70 

SGS-A v/s 

SGS-C 
- - - - - 11.03 

 

 

(a) SGS-A v/s SGS-B 

 

(b) SGS-A v/s SGS-C 

Fig. 6 Comparing the shape of SGS-A with SGS-B and SGS-C 

subgrid models. 

Now, Pearson’s correlation (PC) and Spearson’s correlation 

(SC) have been studied between the subgrid models. The PC and 

SC are useful to study to summarize the strength of a linear 

relationship between the datasets. Table 2 and Table 3, clearly 

state that the velocity component 𝑈𝑥 of the SGS models have 

positive correlations. The Pearson’s correlation of SGS-A 

between SGS-B and SGS-C are 0.9 and 0.8, whereas Spearson’s 

correlation of SGS-A between SGS-B and SGS-C are 0.9 and 

0.9, respectively.  

Table 2 Comparing the Pearson’s correlation of the SGS 

models 

SGS Models Variable Pearson’s correlation 

SGS-A v/s SGS-B 𝑈𝑥 0.9 

SGS-A v/s SGS-C 𝑈𝑥 0.8 

Table 3 Comparing Spearson’s correlation of the SGS models 

SGS Models Variable Spearson’s correlation 

SGS-A v/s SGS-B 𝑈𝑥 0.9 

SGS-A v/s SGS-C 𝑈𝑥 0.9 
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The correlation matrices are plotted regarding three SGS 

models data in Fig. 7, see more details in [1],[19]. It is showing 

an excellent performance with Pearson’s correlation and 

Spearson’s correlation values. Moreover, all three SGS models 

are presented like Gaussian distribution in Fig. 7. 

 

(a) 

 

(b) 

Fig. 7 (a) Pair plots, and (b) correlation matrix of 𝑈𝑥component 

between the SGS models 

Finally, Gradient decent algorithm has been studied to 

identify the performance of SGS models. So, in order to train the 

machine learning and deep learning models, gradient decent is 

one of the most popular iterative optimization algorithms [20]. It 

is useful in finding the local minimum of a function. The main 

advantage of using a gradient decent algorithm is to minimize the 

cost function using iteration. However, the cost function is 

described as the measurement of the difference or inaccuracy 

between the current position’s actual values and expected values, 

and it takes the form of a single real integer. In Fig. 8, gradient 

decent has been shown for the 𝑈𝑥  component of SGS-A and 

SGS-B models.  

Similarly, gradient decent has been shown for the 

𝑈𝑥component of SGS-A and SGS-C models in Fig. 8. 

Corresponding linear regression plots of 𝑈𝑥component for SGS 

models present well performance by obtaining the minimum 

bias, see Fig. 8. Both figures are showing similar weights of 0.9, 

and a minimum cost between SGS-A and SGS-B is 1.22, 

whereas the minimum cost between SGS-A and SGS-C is 2.5. 

 

(a) Plot of cost v/s weight of 𝑈𝑥 data between SGS-A and 

SGS B models. 

 

(b) Liner regression plot of 𝑈𝑥 between SGS-A and SGS-B 

models. 

 
(c) Plot of cost v/s weight of 𝑈𝑥 data between SGS-A and 

SGS-C models. 

Fig. 8 Plot of cost v/s weight of 𝑈𝑥 data between SGS models 

6 Conclusion and Future Scope 

The present article is focused on the subgrid-scale 

dissipation and production of turbulence generation, which is 

significantly influenced by the potential role of vortex stretching. 

The concept of this article learns through the statistical and 

machine learning approaches. For this purpose, the vortex 

stretching-based model SGS-A is used to demonstrate the SGS 

dissipation and validated with other two dynamic SGS models, 

such as SGS-B and SGS-C. The performance of the SGS-A 

model is well agreed with SGS-B and SGS-C models. 

Specifically, the loss of turbulence is more correlated to the 

turbulence production in the SGS-A model compared with the 

other SGS models. The JPDF of SGS model is presented the 

vortex stretching and sheetlike dissipation in the models and 
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indicates a playing role in a turbulent flow. Hence, this study 

suggests that the vortex stretching mechanism cascades energy. 

These findings suggest that a turbulence model can 

effectively learn about the SGS dissipation from singular values 

of the velocity gradient tensor. The findings of JPDF of 

invariants of the velocity gradient tensor suggest that we may 

further learn about JPDF for higher resolution of LES data. Other 

possible further applications can include, such as magneto 

hydrodynamics, Ocean atmosphere, aerodynamics, fluid-solid 

interactions, etc. 
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