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ABSTRACT   

Newton-Cotes integration formulae have been researched for a long time, but the topic is still of interest since the correctness of 

the techniques has not yet been explicitly defined in a sequence for diverse engineering situations. The purpose of this paper is to give 

the readers an overview of the four numerical integration methods derived from Newton-Cotes formula, namely the Trapezoidal rule, 

Simpson's 1/3rd rule, Simpson's 3/8th rule, and Weddle's rule, as well as to demonstrate the periodicity of the most accurate methods 

for solving each engineering integral equation by varying the number of sub-divisions. The exact expressions by solving the numerical 

integral equations have been determined by Maple program and comparisons have been done using Python version 3.8. 

Keywords: Numerical Integration Accuracy, Trapezoidal Rule, Simpson’s 1/3 Rule, Simpson’s 3/8 Rule, Weddle’s Rule. 

 

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. 

1 Introduction   

Throughout the entire history of mathematical research, 

integration is undoubtedly one of the most important 

mathematical concepts ever conceived. An integral is a 

mathematical term that defines displacement, area, volume, and 

other ideas that result from the combination of infinitesimal data. 

The process of determining integrals is known as integration. 

Numerical integration is the process of estimating the value 

of a definite integral from the estimated numerical values of the 

integrand. If the numerical integration is performed on a single 

variable, it is called Quadrature, while for multiple variables, it 

is called Cubature. Scientists and engineers mostly utilize 

numerical integration to get an approximate solution for definite 

integrals that cannot be solved analytically. The reasons for 

which numerical integration is preferred over analytical are:  

 Although there is a closed form solution, calculating 

the answer numerically can be difficult. 

 The integrand f(x) may only be known at a few 

locations, as determined through sampling. 

 Many integrals are not analytically evaluable or have 

no closed form solution. e.g. ∫ 𝑒−2𝑥3
𝑑𝑥

𝑡

0
   

 Although the integrand f(x) is not explicitly known, a 

collection of data points for this integrand is provided. 

The term ‘Numerical Integration’ was first coined in 1915 

in the booklet named A Course in Interpolation and Numeric 

Integration for the Mathematical Laboratory by David Gibb.   

Many academic areas, including applied mathematics, 

geometry, finance, statistics, economics, and engineering, use 

numerical integration methods. The available numerical 

integration methods include Quadrature methods, Gaussian 

integration, Monte-Carlo integration, Adaptive Quadrature, and 

the Euler-Maclaurin formula, which are used to compute 

complex functions. The Newton-Cotes formulas are also 

acknowledged as the Newton-Cotes quadrature standards or 

truly Newton-Cotes laws. These are the numerical integration 

implementation techniques (also regarded as quadrature), 

especially focused on measuring the integrand at equally spaced 

numerical analysis factors. The methods are named after Isaac 

Newton and Roger Cotes. There are two forms of the method for 

Newton-Cotes; Open Newton-Cotes and Closed Newton-Cotes. 

Trapezoidal rule, Simpson 1/3 rule, Simpson 3/8 rule, Weddle’s 

rule and Boole's rule originate from the closed Newton-Cotes 

formula. On the other hand, Midpoint law, Trapezoid process, 

Milne's rule is derived from the formula of open Newton-Cotes. 

The different numerical integration equations are covered in 

works by S.S. Sastry [1]-[2], R.L. Burden [3]-[4], J.H. Mathews 

[5]-[6], and others. M. Concepcion Austin [4] was helpful in 

evaluating different numerical integration producers and 

addressing more sophisticated numerical integration techniques. 

Gordon K. Smith [5] made contributions to this discipline 

through his analytic study of numerical integration and a 

collection of 33 papers and books on the subject. Rajesh Kumar 

Sinha [6] attempted to evaluate an integrable polynomial without 

using the Taylor Series. Gerry Sozio [7] examined a 

comprehensive overview of different numerical integration 

methods. J.Oliver [8] explored the multiple evaluation 

procedures of definite integrals using higher-order formulas. A. 

Nataranjan and N. Mohankumar [9] compared several 

quadrature methods for approximating Cauchy principal value 

integrals. D.J. Liu, J.M. Wu, and D.H. Yu [10] explored the super 

convergence of the Newton-Cotes rule for Cauchy principal 

value integrals. Romesh Kumar Muthumalai [11] attempted to 

calculate the inaccuracy of numerical integration and 

differentiation, and he also developed several formulas for 

numerical differentiation by divided difference. Md. Mamun-Ur-

Rashid Khan [12] devised a novel technique to numerical 

integration strategies for uneven data space. 

In the realm of applied mathematics, numerical integration 

has a wide range of applications, particularly in mathematical 

physics and computational chemistry [13]. It is also employed in 

population estimation [14], medical picture reconstruction [15], 

and physics [16]. Chapra SC showed in Applied Numerical 

Methods with MATLAB [17] the application of numerical 

methods to solve problems in engineering and science.   
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Previously, many mathematical softwares like Mathcad 

[18], Matlab [19], Fortran, C, C++ [20]-[21], and Mathematica 

[22] have been used to solve integrals numerically. Caligaris et.al 

[22] had designed a tool which performs numerical integration in 

Mathematica by four methods namely Trapezoidal, Simpson’s 

1/3, Simpson’s 3/8, and Gauss Quadrature with various points.    

In this paper, the use of numerical integration in different 

engineering applications has been focused on. Instead of using 

the other previously used languages, we used Python 3.8 to 

solve different integral equations. From the graphs and the 

values of individual problems, it is seen that with the change of 

interval, the most accurate method changes and there is an 

interesting pattern of accuracy that is followed in each 

engineering problem.  

2 Mathematical Model 

2.1 Newton-Cotes formula 

Newton’s forward difference formula for equally spaced 

intervals is given by 

y(x) = y0 + u Δ y0 +
𝑢(𝑢−1)

2!
 Δ

2 y0 + 
𝑢(𝑢−1)(𝑢−2)

3!
 Δ

3 y0 +……. 

Here, u = 
𝑥−𝑥0

ℎ
 , x = x0 + uh, dx = hdu 

∫ 𝑦 𝑑𝑥
𝑥𝑛

𝑥0

 

= ∫ 𝑓(𝑥) 𝑑𝑥
𝑥0+𝑛ℎ

𝑥0
 

= ∫ (
𝑛

0
 y0 + u Δ y0 +

𝑢(𝑢−1)

2!
 Δ

2 y0 + 
𝑢(𝑢−1)(𝑢−2)

3!
 Δ

3 y0 +…….) 

hdu 

= h ∫ (
𝑛

0
 y0 + u Δ y0 +

𝑢(𝑢−1)

2!
 Δ

2 y0 + 
𝑢(𝑢−1)(𝑢−2)

3!
 Δ

3 y0 +…….) 

du 

= h [ ny0 + 
𝑛2

2
 Δ y0 +

1

2
 ( 

𝑛3

3
 - 

𝑛2

2
) Δ

2 y0+………] 

This is the required Newton-Cotes Quadrature formula. 

By putting n = 1 in the Quadrature formula, we get the 

Trapezoidal rule, 

∫ 𝑦 𝑑𝑥
𝑥𝑛

𝑥0
  = 

ℎ

2
 [( y0 + yn ) + 2 ( y1 + y2 + y3 +……..+ yn-1)] 

By putting n = 2 in the Quadrature formula, we get the 

Simpson’s 
1

3
 rule,  

∫ 𝑦 𝑑𝑥
𝑥𝑛

𝑥0
  = 

ℎ

3
 [( y0 + yn ) + 2 ( y2 + y4 +….+ y2n ) + 4 ( y1+ y3 

+ …)] 

By putting n = 3 in the Quadrature formula, we get the 

Simpson’s 
3

8
 rule,  

∫ 𝑦 𝑑𝑥
𝑥𝑛

𝑥0
  = 

3ℎ

8
 [( y0 + yn) + 3 ( y1 +y2 + y4 + y5 +….) + 2 ( y3 

+  y6 + …)] 

By putting n = 6 in the Quadrature formula, we get the 

Weddle’s rule,  

∫ 𝑦 𝑑𝑥
𝑥𝑛

𝑥0
  = 

3ℎ

10
 [( y0 + yn)+ 5 ( y1+ y7 + y13 + …….) + ( y2 + 

y8 + y14 +…….) + 6 ( y3 + y9+ y15 +..…) + ( y4 + y10 + y16 

+…….) + 5 ( y5 + y11 + y17 +..…) 

3 Different Engineering Problems & Their Applications 

3.1 Spring 

 

Fig. 1 Spring [23]. 

“The mass m is attached to a spring (see ) of free length b 

and stiffness k. The coefficient of friction between the mass and 

the horizontal rod is μ. The acceleration of the mass can be shown 

to be a = − f (x), where 

f(x) = µg + 
𝑘

𝑚
 (µb + x) (1 - 

𝑏

√𝑏2+𝑥2
 )             

If the mass is released from rest at x = b, its speed at x = 0 is 

given by 

v0 = √2 ∫ f(x)dx
b

0
                                 

Compute 𝑣0 by using the data m = 0.8 kg, b = 0.4 m, μ = 0.3, 

k = 80 N/m and g = 9.81 m/𝑠2 [23].” 

3.1.1 Actual Solution 

When x = 0, the speed of the mass m will be 

𝑣0 = √2 ∫ 𝑓(𝑥)𝑑𝑥
0.4

0
 

     = √2 ∫ µ𝑔 +  
𝑘

𝑚
 (µ𝑏 +  𝑥) (1 – 

𝑏

√𝑏2+𝑥2
 )𝑑𝑥

0.4

0
 

     = 

√2 [
𝑥(50000𝑥+14943)−4800 ln|√25𝑥2+4  + 5𝑥|

1000
+ 8√25𝑥2 + 4]

0

0.4

 

          = 2.49767483245384 m/s 

3.1.2 Engineering Application 

The described problem and its solution can be used for 

controlling forces and movement in brakes and clutch systems, 

for minimizing shocks and vibrations in the suspension system 

of a car, energy conservation in the case of toys and watches, etc. 

3.2 Capacitor 

“A capacitor in an electrical circuit is initially at zero charge. 

At time t of 1 s, a switch is closed, and a time-dependent electric 

current I(t) charges up the capacitor. The current is given as 

I(t) = 4 (1 - 𝑒−0.5) 𝑒−0.5 (𝑡−1) (1 - 𝑒−𝑡).  

Compute the charge Q as function of time up to t = 20 s 

[24].” 
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3.2.1 Actual Solution 

Q(t) = ∫ 𝐼(𝑡) 𝑑𝑡
20

1
 

       = ∫ 4 (1 − 𝑒−0.5) 𝑒−0.5 (𝑡−1) (1 − 𝑒−𝑡) 𝑑𝑡
20

1
 

       = [−
8 (√𝑒 − 1) 𝑒−1.5𝑡 (3𝑒𝑡−1)

3
]

1

20

 

       = 2.76152102437006 coulomb 

3.2.2 Engineering Application 

The above capacitor equation and its solutions can be used 

in both AC and DC capacitors, to reduce ripple voltage in filter 

circuits, in a single phase motor, for filtering and tuning circuits, 

as a storage in digital equipment and long-time constant circuits, 

for frequency selection in tuning circuits, energy storage in a 

video flash circuits, suppresses radio frequency interference as 

used in a snubber circuit etc. 

3.3 Volume Flow Rate of Turbulent Flow 

“The velocity profile in the turbulent flow of a fluid in a 

smooth circular pipe may be represented by the empirical power-

law equation 

U(x) = 5 (1 − 
𝑥

𝑅
)

1 7⁄

  

Where U(x) is the axial velocity in the pipe, in m/s, x is the 

radial distance from the axis, in meters, and R is the radius of the 

pipe. The total volume flow rate in the pipe is then given by the 

integral ∫ 𝑈(𝑥) 2𝜋𝑥 𝑑𝑥
𝑅

0
. Compute the total volume flow rate if 

R = 0.5m [24].” 

3.3.1 Actual Solution 

The total volume flow rate, 

�̇� = ∫ 𝑈(𝑥) 2𝜋𝑥 𝑑𝑥
.5

0
 

    =∫ 5 (1 − 
𝑥

0.5
)

1 7⁄

2𝜋𝑥 𝑑𝑥
0.5

0
 

    =[−10𝜋 (
7

32
 (1 − 2𝑥)8 7⁄ −  

7

60
 (1 − 2𝑥)15 7⁄ )]

0

0.5

 

    = 3.20704250053958 𝑚3 𝑠⁄  

3.3.2 Engineering Application 

The equation of volume flow rate of turbulent flow is used 

for the external flow of air and water over all vehicles types, 

including automobiles, helicopters, bridges, and submarines, 

dimples in the golf ball, flow near an airplane, in many 

manufacturing devices, and machinery like tanks, ducts, 

precipitators, gas scrubbers, complex scraped surface heat 

exchangers, etc. 

3.4 Wind Force 

The pressure p on a 10 m high structure due to the wind is 

given by the expression 

p(x) = 
150𝑥

1+ 𝑒𝑥 

where x is measured in meters from the bottom of the 

structure and the pressure is in N/𝑚2. If the structure is 2 m wide, 

the total force due to wind is given by the integral 

∫ 2 𝑝(𝑥) 𝑑𝑥
10

0
.  

Compute the total force due to wind. [24] 

3.4.1 Actual Solution 

The total force on the structure due to wind F is given by the 

equation 

F = ∫ 2 (
150𝑥

1+ 𝑒𝑥)
10

0
 𝑑𝑥 

    = [−300𝑥𝑙𝑛(𝑒𝑥 + 1) −  300𝐿𝑖2(−𝑒𝑥) + 150𝑥2]0
10 

    = 246.590293505238 N 

3.4.2 Engineering Application 

The equation of wind force can be used in the field of 

electricity generation by the windmills, sailing vessels, sailboard, 

grain milling for sports like windsurfing, land surfing, kite 

surfing, etc. 

3.5 Total Momentum Flow 

“The velocity profile in the turbulent flow of a fluid in a 

smooth circular pipe may be represented by the empirical power-

law equation 

U(x) = 5 (1 − 
𝑥

𝑅
)

1 7⁄

  

where U(x) is the axial velocity in the pipe, in m/s, x is the 

radial distance from the axis, in meters, and R is the radius of the 

pipe. The momentum flow is given by the integral 

∫ 2𝜋𝑥𝜌[𝑈(𝑥)]2 𝑑𝑥
𝑅

0
, where 𝜌 is the fluid density, given as 1 

kg/𝑚3 for the fluid considered. Compute the total momentum 

flow if R = 0.5 m [24].” 

3.5.1 Actual Solution 

Total momentum flow M is given by the equation 

M = ∫ 2𝜋𝑥𝜌[𝑈(𝑥)]2 𝑑𝑥
0.5

0
 

     = ∫ 2𝜋𝑥(1) [5 (1 − 
𝑥

0.5
)

1 7⁄

]
2

 𝑑𝑥
0.5

0
 

     = [−
175𝜋(18𝑥 + 7) (1−2𝑥)9 7⁄

288
]

0

0.5

 

     = 13.3626770855815 kg.m/s 

3.5.2 Engineering Application 

The momentum flow equation is generally used for non-

uniform flow through a suddenly enlarged pipe, jet propulsion, 

propellers, hydraulic jump in an open channel, etc. 

3.6 Water Force on a Vertical Plate 

The force F(x) exerted per centimeter on a vertical plate 

immersed in flowing water is given by the expression 

F(x) = 1.5𝑥3𝑒−𝑥  

where x is measured from the top of the plate and F(x) is in 

N/cm. If the plate is 10 cm high, compute the total force 𝐹𝑇, in 

Newtons, on the plate is given by [24] 

𝐹𝑇 = ∫ 𝐹(𝑥) 𝑑𝑥
10

0
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3.6.1 Actual Solution 

The total force on the plate is given by the equation 

𝐹𝑇 = ∫ 𝐹(𝑥) 𝑑𝑥
10

0
 

     = ∫ 1.5𝑥3𝑒−𝑥 𝑑𝑥
10

0
 

     = [−1.5𝑒−𝑥(𝑥3 + 3𝑥2 + 6𝑥 + 6)]0
10 

     = 8.90697554391667 N 

3.6.2 Engineering Application 

The equation of water force on a vertical plate is used in dam 

constructions, syringe construction, water tank construction, 

submarine construction, safety equipment for sea drivers, etc. 

3.7 Surface Tension 

“The meniscus of a liquid film supported by surface tension 

can often be represented as 

h(x) = A𝑒−𝑎2𝑥2
  

where h(x) is the height as a function of horizontal distance 

x and A and a are constants. The total volume of liquid supported 

by surface tension is then given by the integral W = ∫ ℎ(𝑥) 𝑑𝑥
𝐿

0
, 

where W is the width of the meniscus and L is its length. If W, L, 

h, and x are all in centimeters, compute this volume for A = 0.8, 

a = 2.0, W = 1 cm and L = 1 cm.” [24]. 

3.7.1 Actual Solution 

The total volume of liquid supported by surface tension is 

W = ∫ ℎ(𝑥) 𝑑𝑥
𝐿

0
    = ∫ 𝐴𝑒−𝑎2𝑥2

𝑑𝑥
1

0
    = ∫ 0.8𝑒−22𝑥2

𝑑𝑥
1

0
 

= [
√𝜋

5
 erf (2x)]

0

1

     

= 0.35283255630497 𝑐𝑚3 

3.7.2 Engineering Application 

The above equation of surface tension is used to remove 

pollutants from water and air, inkjet printer, scientific 

understanding of capillarity, wetting or beading a liquid on a 

surface, etc. 

3.8 Force on Sailboat Mast 

“The force on a sailboat mast can be represented by the 

following function: 

F = ∫ 200 (
𝑍

5+𝑍
)

𝐻

0
 𝑒−2𝑧 𝐻⁄  𝑑𝑧  

where z = the elevation above the deck and H = the height 

of the mast. Compute F for the case where H = 30.” [25] 

3.8.1 Actual Solution 

Force on the sailboat mast is given by the equation 

F = ∫ 200 (
𝑍

5+𝑍
)

30

0
 𝑒−2𝑧 30⁄  𝑑𝑧 

   = [−3000𝑒−
𝑥

15 + 1000𝑒
1

3𝐸𝑖1 (
𝑥+5

15
)]

0

30

    

    = 1480.5684800859 N 

3.8.2 Engineering Application 

The equation of force on a sailboat mast is used for iceboats, 

sail-powered land vehicles, sailing ships, windsurfers, windmill 

sails, wind turbines, etc. 

3.9 Mass Flow Rate 

“The amount of mass transported via a pipe over a period of 

time can be computed as 

 M = ∫ 𝑄(𝑡)𝑐(𝑡) 𝑑𝑡
𝑡2

𝑡1
  

where M = mass (mg), 𝑡1 = the initial time (min), 𝑡2 = the 

final time (min), Q(t) = flow rate (𝑚3/min), and c(t) = 

concentration (mg/𝑚3). The following functional 

representations define the temporal variations in flow and 

concentration: 

Q(t) = 9 + 5 𝑐𝑜𝑠2(0.4𝑡); c(t) = 5𝑒−0.5𝑡 + 2𝑒0.15𝑡, 

determine the mass transported between 𝑡1 = 2 min and 𝑡2 = 

8 min [25].” 

3.9.1 Actual Solution 

The amount of mass transported via pipe between 2 min and 

8 min is 

M = ∫ 𝑄(𝑡)𝑐(𝑡) 𝑑𝑡
8

2
    = ∫ (9 +  5 𝑐𝑜𝑠2(0.4𝑡))(5𝑒−0.5𝑡  +

8

2

 2𝑒0.15𝑡) 𝑑𝑡 

    = [
𝑒−𝑡 2⁄

14151
(𝑒13𝑡 20⁄ (85440 sin

4𝑡

5
+ 16020 cos

4𝑡

5
+

2169820) + 159000 sin
4𝑡

5
− 99375 cos

4𝑡

5
− 1627365)]

2

8

 

    = 335.962530061625 kg 

3.9.2 Engineering Application 

The mass flow rate equation is used in an industrial cooling 

tower, chemical component separation in distillation columns, 

liquid-liquid extraction, as an absorber such as active carbon 

beds, scrubbers or stripping, etc. 

3.10 Rocket Height 

“The upward velocity of a rocket can be computed by the 

following formula: 

v = u ln (
𝑚0

𝑚0−𝑞𝑡
) – gt  

where v = upward velocity, u = velocity at which fuel is 

expelled relative to the rocket, 𝑚0 = initial mass of the rocket at 

time t = 0, q = fuel consumption rate, and g = downward 

acceleration of gravity (assumed constant = 9.81 m/𝑠2). If u = 

1850 m/s, 𝑚0 = 160,000 kg, and q = 2500 kg/s, determine how 

high the rocket will fly in 30 s [25].” 

3.10.1 Actual Solution 

In 30 s, the height of the rocket from the ground will be 

H = ∫ 𝑣 𝑑𝑡
30

0
    = ∫ (1850 ln (

160000

160000 −2500𝑡
) –  9.81𝑡)  𝑑𝑡

30

0
 

    = [−4.905𝑡2 + 1850(𝑡 − 64) ln (
−64

𝑡−64
) + 1850𝑡 −

118400]
0

30

    = 11299.8310550331 m 
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3.10.2 Engineering Application 

The described problem and its solution is used for measuring 

the rocket height from the surface. Although the rocket ejects fuel 

to provide thrust, it is an example of conservation of momentum 

where the system's mass is not constant. The rocket equation 

calculates the difference of velocity obtained by a rocket after 

burning an abundance of fuel that reduces the rocket's overall 

mass. 

3.11 Paratroopers 

“An armed paratrooper with ammunition weighing 322 

pounds jumps from a plane with zero initial velocity. The 

troopers encounter negligible side wind in their descent. 

However, they encounter air resistance whose magnitude is 15 

times the square of the descent velocity v(t); that is, 15[𝑣(𝑡)]2. 

Assume that the mass of the parachute is negligible. Estimate the 

distance paratrooper will travel after 15 s [26].”  

3.11.1 Actual Solution 

The total mass of the falling body m = 322/32.2 = 10 slugs, 

and the air resistance R(t) = 15[𝑣(𝑡)]2 as given. The 

instantaneous descending velocity v(t) can be obtained by using 

     
𝑑𝑣(𝑡)

𝑑𝑡
 + 

𝑅(𝑡)

𝑚
 = g       

  ≫
𝑑𝑣(𝑡)

𝑑𝑡
 + 

15[𝑣(𝑡)]2

10
 = 32.2 

Consequently, one may express the solution of the above 

equation with v = v(𝑡) as 

v(𝑡) = 
4.634(𝑒13.9𝑡 − 1)

𝑒13.9𝑡 − 1
 

So, the distance paratroopers will travel is given by the 

equation, 

X = ∫  
4.634(𝑒13.9𝑡 − 1)

𝑒13.9𝑡 + 1
 𝑑𝑡

15

0
  

= [
2317 ln(𝑒13.9𝑡+1)

3475
+ 

2317𝑡

500
]

0

15

 

   = 69.0478353906885 ft 

3.11.2 Engineering Application 

The stated equation and its solution are employed in military 

force distribution and transportation are frequently utilized in 

surprise attacks to take important targets such as airfields or 

bridges, to build an airhead for landing further units, like in the 

Battle of Crete, and so on. 

3.12 Horizontal Deflection 

“The part shown is formed from a 
1

8
 in diameter steel wire, 

with R = 5 in and l = 4 in. A force is applied with P = 1 lbf. Use 

Castigliano’s method to estimate the horizontal deflection at 

point A [27].”  

3.12.1 Actual Solution 

For the straight portion, 

Momentum, 𝑀𝐴𝐵 = Px ;    
𝜕𝑀𝐴𝐵

𝜕𝑃
 = x 

 

 

Fig. 2 Beam [27]. 

For the curved portion, 

Momentum, 𝑀𝐵𝐶  = P[𝑅(1 −  cos 𝜃) + 𝑙] ; 

 
𝜕𝑀𝐵𝐶

𝜕𝑃
 = [𝑅(1 −  cos 𝜃) + 𝑙] 

The horizontal deflection at point A can be written as 

𝛿 = ∫
1

𝐸𝑙
(𝑀𝐴𝐵

𝜕𝑀𝐴𝐵

𝜕𝑃
)

𝑙

0
𝑑𝑥 + ∫

1

𝐸𝑙
(𝑀𝐵𝐶

𝜕𝑀𝐵𝐶

𝜕𝑃
) 𝑅𝑑𝜃

𝜋 2⁄

0
 

   = 
𝑃𝑙3

3𝐸𝑙
 + 

𝑃𝑅

𝐸𝑙
 ∫ [𝑅2(1 − 2 cos 𝜃 + cos2 𝜃) + 2𝑅𝑙(1 −

𝜋 2⁄

0

 cos 𝜃) +  𝑙2] 𝑑𝜃 

   = 
(1)(43)

3(30)(106)𝜋(0.1254)/64
 + 

(1)(5)

(30)(106)𝜋(0.1254)/64
 ∫ [52(1 −

𝜋 2⁄

0

2 cos 𝜃 + cos2 𝜃) + 2(5)(4)(1 −  cos 𝜃) + 42] 𝑑𝜃 

   = 
(1)(43)

3(30)(106)𝜋(0.1254)/64
 + 

(1)(5)

(30)(106)𝜋(0.1254)/64
 

[
25 sin(2𝜃)−360 sin 𝜃+374𝜃

4
]

0

𝜋 2⁄

 

   = 0.85023052811512 in 

3.12.2 Engineering Application 

The horizontal deflection equation can be used in various 

places, including houses and bridges, lifting beams, gantry 

cranes, to prevent differential settlement and distribute lateral 

forces caused by earthquakes, strength calculations, etc. 

3.13 Block-Type Hand Brake (Moment of Frictional Forces) 

“The block-type hand brake shown in the Fig. 3 has a face 

width of 1.25 in and a mean coefficient of friction of 0.25. For a 

maximum pressure on the shoe of 27.4 psi, find the moment of 

frictional forces [27].” 

 
Fig. 3 Block type hand brake [27]. 
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3.13.1 Actual Solution 

Given, face width b = 1.25 in, mean coefficient of friction f 

= 0.25, radius r = 6 in, maximum pressure on the shoe 𝑃𝑎 = 27.4 

psi. 

Here, 𝜃1= 45° - tan−1 (6 8)⁄  = 8.13°, 𝜃2 = 98.13°, 𝜃𝑎 = 90°, 
a = (62 + 82)0.5 = 10 in 

So the moment of friction forces can be written as 

𝑀𝑓 = 
𝑓𝑃𝑎𝑏𝑟

sin 𝜃𝑎
∫ sin 𝜃 (𝑟 − 𝑎 cos 𝜃)

𝜃2

𝜃1
𝑑𝜃 

      = 
(0.25)(27.4)(1.25)(6)

1
∫ sin 𝜃 (6 − 10 cos 𝜃)

98.13°

8.13°
𝑑𝜃 

      = 
(0.25)(27.4)(1.25)(6)

1
[cos 𝜃(5 cos 𝜃 − 6)]8.13°

98.13° 

      = 102.144340253044 lbf.in 

3.14 Block-Type Hand Brake (Moment of Normal Forces) 

“The block-type hand brake shown in Fig. 4 has a face width 

of 1.25 in and a mean coefficient of friction of 0.25. For a 

maximum pressure on the shoe of 27.4 psi, find the moment of 

normal forces [27].” 

 

Fig. 4 Block type hand brake [27]. 

3.14.1 Actual Solution 

Given, face width b = 1.25 in, mean coefficient of friction f 

= 0.25, radius r = 6 in, maximum pressure on the shoe 𝑃𝑎 = 27.4 

psi. 

Here, 𝜃1= 45° - tan−1 (6 8)⁄  = 8.13°, 𝜃2 = 98.13°, 𝜃𝑎 = 90°, 
a = (62 + 82)0.5 = 10 in 

So the moment of friction forces can be written as 

𝑀𝑁 = 
𝑎𝑃𝑎𝑏𝑟

sin 𝜃𝑎
∫ sin2 𝜃

𝜃2

𝜃1
𝑑𝜃      = 

(10)(27.4)(1.25)(6)

1
∫ sin2 𝜃

98.13°

8.13°
𝑑𝜃 

      = 
(10)(27.4)(1.25)(6)

1
[

2𝜃 − sin(2𝜃)

4
]

8.13°

98.13°

 

      = 1901.68970153642 lbf.in 

3.14.2 Engineering Application 

The above equation of hand brake is used in the automobile. 

Hand brakes are sometimes referred to as parking brakes, and 

emergency brakes are used to hold the vehicle steady. It can 

operate in various places, including racing cars. 

3.15 Speed of Block 

“The block of mass M = 2 kg is subjected to a force having 

a constant direction and a magnitude F = k/(a+bx) where, k = 

300 N, a = 1, b = 1 𝑚−1. When x = 𝑥1 = 4 m, the block is moving 

to the left with a speed 𝑣1 = 8 𝑚 𝑠⁄ . Determine its speed when x 

= 𝑥2 = 12 m. The coefficient of kinetic friction between the block 

and the ground is 𝜇𝑘 = 0.25 [28].”  

 

Fig. 5 Block [28]. 

3.15.1 Actual Solution 

Considering 𝜃 = 30° and g = 9.81 m𝑠−2, the speed of the 

block when x = 𝑥2 = 12 m will be written as 

v = √𝑣1
2 + 

2(∫
𝑘 cos 𝜃

𝑎+𝑏𝑥
 𝑑𝑥− 𝜇𝑘 ∫ 𝑀g+ 

𝑘 sin 𝜃

𝑎+𝑏𝑥
 𝑑𝑥 

𝑥2
𝑥1

𝑥2
𝑥1

)

𝑀
 

   = √82 +  
2(300 ∫  

 cos 30°

1+𝑥
 𝑑𝑥− 0.25 ∫ 2(9.8)+ 

300 sin 30°

1+𝑥
 𝑑𝑥 

12
4

12
4 )

2
 

   = 15.4005674022625 𝑚 𝑠⁄  

3.15.2 Engineering Application 

The problem mentioned can be utilized to measure the speed 

when friction is used. We can walk due to friction; friction is used 

to hold together other items, heat switching through matches, and 

transportation system also requires acceleration friction, braking, 

etc. 

3.16 Rocket Velocity 

“A rocket has an empty weight 𝑊1 = 500 lb and carries fuel 

of weight 𝑊2 = 300 lb. If the fuel is burned at the rate c = 15 

𝑙𝑏 𝑠⁄  and ejected with a relative velocity 𝑣𝐷𝑅 = 4400 𝑓𝑡 𝑠⁄  

determine the maximum speed attained by the rocket starting 

from rest. Neglect the effect of gravitation on the rocket. 

(Gravitational acceleration g = 32.2 𝑓𝑡 𝑠⁄ ) [28]”  

3.16.1 Actual Solution 

Initial mass of the rocket 𝑚0 = 
𝑊1+ 𝑊2

g
 = 

800

32.2
 lb 

The maximum speed occurs when all the fuel is consumed, 

that is, where time t = 
𝑊2

𝑐
 = 

300

15
 = 20 s 

The maximum speed of the rocket, 

𝑣𝑚𝑎𝑥  = ∫

𝑐

g
𝑣𝐷𝑅

𝑚0− 
𝑐

g
𝑡

𝑡

0
 dt   = ∫

15

32.2
(4400)

800

32.2
 − 

15

32.2
𝑡

20

0
 dt 

 = [−4400 ln|3𝑡 − 160|]0
20   

= 2068.01596868123 𝑓𝑡 𝑠⁄  

3.16.2 Engineering Application 

Rockets are used to launch artificial satellites, human 

spaceflight, and space exploration, as well as for pyrotechnics, 

weapons, and ejection seats. Chemical rockets are the most 

frequent type of high-powered rocket, and they typically 

generate a high-speed exhaust by mixing fuel and an oxidizer. 
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3.17 Gear Box 

“Morse Industrial manufactures the speed reducer shown. If 

a motor drives the gear shaft S with an angular acceleration 𝛼 = 

k𝑒𝑏𝑡, where k = 0.4 𝑟𝑎𝑑 𝑠2⁄ , b = 1 𝑠−1. Determine the angular 

velocity of shaft E at time t = 2 s after starting from rest. The 

radii of gear A, B, C, and D are 20 mm, 80 mm, 30 mm, and 120 

mm respectively. Note that gears B and C are fixed connected to 

the same shaft [28].”  

 
Fig. 6 Speed reducer [28]. 

3.17.1 Actual Solution 

Angular velocity, 

𝜔 = ∫ 𝑘𝑒𝑏𝑡𝑑𝑡
𝑡

0
  = ∫ 0.4𝑒𝑡𝑑𝑡

𝑡

0
  = [0.4𝑒𝑡]0

2 

    = 0.15972640247327 𝑟𝑎𝑑 𝑠⁄  

3.17.2 Engineering Application 

The problem described and its solution are utilized in a 

variety of industries and machines. Factory automation, 

packaging machines, industrial machines, food processing 

machines, car production machines, machine tool industry, 

material handling, printing machines, automatic cutting/welding 

machines, machines for medical/cosmetic fields, construction 

machines, wood/glass processing machines, agricultural 

machinery, material processing machines, and so on are among 

the required application fields. 

4 Results and Discussion 

The engineering integral equations were solved and the 

actual values were determined using Maple program. For 

determining the most accurate method, we followed some 

definite steps. First, we found the numerical integration solutions 

of the four methods by using Python 3.8. We considered the 

intervals from 6 to 500.  The detail of the comparison of various 

methods for the periodicity and accuracy is summarized in Table 

1. The data for the graphs were constructed using Pandas. Two 

graphs were exhibited- one containing a maximum number of 

values and the other containing values from the selected zone. 

The graphs were constructed using Matplotlib.  

Table 1 Comparison of various methods for the periodicity and accuracy. 

Problem Name 

Number of 

intervals to 

start forming 

the most 

accurate 

method 

Number of intervals for the most accurate method (when n = 1, 2, 3, ...) 

Weddle’s 

method 

Simpson’s 1/3 

method 

Simpson’s 3/8 

method 

Trapezoidal 

method 

Spring 6 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Capacitor 204 6n 6n+2 or 6n+4 
6n+1 or 6n+3 or 

6n+5 
No interval 

Volume flow rate of turbulent 

flow 
24 

6n or 6n+2 or 

6n+4 
No interval 6n+3 6n+1 or 6n+5 

Wind force 30 6n 6n+2 or 6n+4 
6n+1 or 6n+3 or 

6n+5 
No interval 

Total momentum flow 18 
6n or 6n+2 or 

6n+4 
No interval 6n+3 6n+1 or 6n+5 

Water force on a vertical plate 54 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Surface tension 6 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Force on a sailboat mast 18 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Mass flow rate 6 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Rocket height 6 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Paratroopers 42 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Horizontal deflection 6 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Block-type hand brake (moment 

of frictional forces) 
6 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Block-type hand brake (moment 

of normal forces) 
6 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Speed of block 6 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Rocket velocity 6 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 

Gear box 6 6n 6n+2 or 6n+4 6n+3 6n+1 or 6n+5 
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In the spring problem, the sequence of the most accurate 

numerical integration method has started forming when the 

number of intervals was 6. When the number of intervals was 6n 

(where n = 1, 2, 3, 4.....), Weddle’s method was found to be the 

most accurate. But when the number of intervals changed to 6n 

+ 2 or 6n + 4, the most accurate method was Simpson’s 1/3. 

Simpson’s 3/8 method was found to be the most accurate when 

the number of intervals was 6n + 3. For a number of intervals 

equal to 6n + 1 or 6n + 5, Trapezoidal method became the most 

accurate. The visual proof of the aforementioned sentences is 

shown in Fig. 7.   

 

(a) 

 

(b) 

Fig. 7 Graph of Percentage of error vs. Number of Sub-division 

for spring problem (a) Whole (b) Magnified 

In the capacitor problem, the sequence of the most accurate 

numerical integration method has started forming when the 

number of intervals was 204. When the number of intervals was 

6n (where n = 34, 35, 36, 37.....), Weddle’s method was found to 

be the most accurate. But when the number of intervals changed 

to 6n + 2 or 6n + 4, Simpson’s 1/3 method was found to be the 

most accurate. Simpson’s 3/8 method was found to be the most 

accurate when the number of intervals was 6n + 1 or 6n + 3 or 6n 

+ 5. There is no number of intervals for which Trapezoidal 

method was found to be the most accurate. The visual proof of 

the aforementioned sentences is shown in Fig. 8.   

In the volume flow rate of the turbulent flow problem, the 

sequence of the most accurate numerical integration method has 

started forming when the number of intervals was 24. When the 

number of intervals was 6n or 6n + 2 or 6n + 4 (where n = 4, 5, 

6, 7.....), Weddle’s method was found to be the most accurate. 

There is no number of intervals for which Simpson’s 1/3 method 

was found to be the most accurate. But when the number of 

intervals changed to 6n + 3, Simpson’s 3/8 method was found to 

be the most accurate. The trapezoidal method was found to be 

the most accurate when a number of intervals switched to 6n + 1 

or 6n + 5. The visual proof of the aforementioned sentences is 

shown in Fig. 9. 

 

(a) 

 

(b) 

Fig. 8 Graph of Percentage of error vs. Number of Sub-division 

for capacitor problem (a) Whole (b) Magnified 

 

(a) 

 

(b) 

Fig. 9 Graph of Percentage of error vs. Number of Sub-division 

for volume flow rate of turbulent flow problem (a) Whole (b) 

Magnified 
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In the wind force problem, the sequence of the most accurate 

numerical integration method has started forming when the 

number of intervals was 30. When the number of intervals was 

6n (where n = 5, 6, 7, 8.....), Weddle’s method was found to be 

the most accurate. But when the number of intervals changed to 

6n + 2 or 6n + 4, Simpson’s 1/3 method was found to be the most 

accurate. Simpson’s 3/8 method was found to be the most 

accurate when the number of intervals was 6n + 1 or 6n + 3 or 6n 

+ 5. There is no number of intervals for which the Trapezoidal 

method was found to be the most accurate. The visual proof of 

the aforementioned sentences is shown in Fig. 10.   

 

(a) 

 

(b) 

Fig. 10 Graph of Percentage of error vs. Number of Sub-

division for wind force problem (a) Whole (b) Magnified 

In the total momentum flow problem, the sequence of the 

most accurate numerical integration method has started forming 

when the number of intervals was 18. When the number of 

intervals was 6n or 6n + 2 or 6n + 4 (where n = 3, 4, 5, 6.....), 

Weddle’s method was found to be the most accurate. There is no 

number of intervals for which Simpson’s 1/3 method was found 

to be the most accurate. But when the number of intervals 

changed to 6n + 3, Simpson’s 3/8 method was found to be the 

most accurate. The trapezoidal method was found to be the most 

accurate when a number of intervals switched to 6n + 1 or 6n + 

5. The visual proof of the aforementioned sentences is shown in 

Fig. 11.   

In the water force on a vertical plate problem, the sequence 

of the most accurate numerical integration method has started 

forming when the number of intervals was 54. When the number 

of intervals was 6n (where n = 9, 10, 11, 12.....), Weddle’s 

method was found to be the most accurate. But when the number 

of intervals changed to 6n + 2 or 6n + 4, Simpson’s 1/3 method 

was found to be the most accurate. Simpson’s 3/8 method was 

found to be the most accurate when the number of intervals was 

6n + 3. The trapezoidal method was found to be the most accurate 

when a number of intervals switched to 6n + 1 or 6n + 5. The 

visual proof of the aforementioned sentences is shown in Fig. 12. 

 

(a) 

 

(b) 

Fig. 11 Graph of Percentage of error vs. Number of Sub-

division for total momentum flow problem (a) Whole (b) 

Magnified 

  

 

(a) 

 

(b) 

Fig. 12 Graph of Percentage of error vs. Number of Sub-

division for water force on a vertical plate problem (a) Whole 

(b) Magnified 
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In the surface tension problem, the sequence of the most 

accurate numerical integration method has started forming when 

the number of intervals was 6. When the number of intervals was 

6n (where n = 1, 2, 3, 4.....), Weddle’s method was found to be 

the most accurate. But when the number of intervals changed to 

6n + 2 or 6n + 4, Simpson’s 1/3 method was found to be the most 

accurate. Simpson’s 3/8 method was found to be the most 

accurate when the number of intervals was 6n + 3. The 

trapezoidal method was found to be the most accurate when a 

number of intervals switched to 6n + 1 or 6n + 5. The visual proof 

of the aforementioned sentences is shown in Fig. 13.   

 

(a) 

 

(b) 

Fig. 13 Graph of Percentage of error vs. Number of Sub-

division for surface tension problem (a) Whole (b) Magnified 

In the force on a sailboat mast problem, the sequence of the 

most accurate numerical integration method has started forming 

when the number of intervals was 18. When the number of 

intervals was 6n (where n = 3, 4, 5, 6.....), Weddle’s method was 

found to be the most accurate. But when the number of intervals 

changed to 6n + 2 or 6n + 4, Simpson’s 1/3 method was found to 

be the most accurate. Simpson’s 3/8 method was found to be the 

most accurate when the number of intervals was 6n + 3. The 

trapezoidal method was found to be the most accurate when a 

number of intervals switched to 6n + 1 or 6n + 5. The visual proof 

of the aforementioned sentences is shown in Fig. 14.   

In the mass flow rate problem, the sequence of the most 

accurate numerical integration method has started forming when 

the number of intervals was 6. When the number of intervals was 

6n (where n = 1, 2, 3, 4.....), Weddle’s method was found to be 

the most accurate. But when the number of intervals changed to 

6n + 2 or 6n + 4, Simpson’s 1/3 method was found to be the most 

accurate. Simpson’s 3/8 method was found to be the most 

accurate when the number of intervals was 6n + 3. The 

trapezoidal method was found to be the most accurate when a 

number of intervals switched to 6n + 1 or 6n + 5. The visual proof 

of the aforementioned sentences is shown in Fig. 15. 

 

(a) 

 

(b) 

Fig. 14 Graph of Percentage of error vs. Number of Sub-

division for force on a sailboat mast problem (a) Whole (b) 

Magnified 

  

 

(a) 

 

(b) 

Fig. 15 Graph of Percentage of error vs. Number of Sub-

division for mass flow rate problem (a) Whole (b) Magnified 

In the rocket height problem, the sequence of the most 

accurate numerical integration method has started forming when 
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the number of intervals was 6. When the number of intervals was 

6n (where n = 1, 2, 3, 4.....), Weddle’s method was found to be 

the most accurate. But when the number of intervals changed to 

6n + 2 or 6n + 4, Simpson’s 1/3 method was found to be the most 

accurate. Simpson’s 3/8 method was found to be the most 

accurate when the number of intervals was 6n + 3. The 

trapezoidal method was found to be the most accurate when a 

number of intervals switched to 6n + 1 or 6n + 5. The visual proof 

of the aforementioned sentences is shown in Fig. 16.   

 

(a) 

 

(b) 

Fig. 16 Graph of Percentage of error vs. Number of Sub-

division for rocket height problem (a) Whole (b) Magnified 

In the paratroopers problem, the sequence of the most 

accurate numerical integration method has started forming when 

the number of intervals was 42. When the number of intervals 

was 6n (where n = 7, 8, 9, 10.....), Weddle’s method was found 

to be the most accurate. But when the number of intervals 

changed to 6n + 2 or 6n + 4, Simpson’s 1/3 method was found to 

be the most accurate. Simpson’s 3/8 method was found to be the 

most accurate when the number of intervals was 6n + 3. The 

trapezoidal method was found to be the most accurate when a 

number of intervals switched to 6n + 1 or 6n + 5. The visual proof 

of the aforementioned sentences is shown in Fig. 17.   

In the horizontal deflection problem, the sequence of the 

most accurate numerical integration method has started forming 

when the number of intervals was 6. When the number of 

intervals was 6n (where n = 1, 2, 3, 4.....), Weddle’s method was 

found to be the most accurate. But when the number of intervals 

changed to 6n + 2 or 6n + 4, Simpson’s 1/3 method was found to 

be the most accurate. Simpson’s 3/8 method was found to be the 

most accurate when the number of intervals was 6n + 3. The 

trapezoidal method was found to be the most accurate when a 

number of intervals switched to 6n + 1 or 6n + 5. The visual proof 

of the aforementioned sentences is shown in Fig. 18. 

 

(a) 

 

(b) 

Fig. 17 Graph of Percentage of error vs. Number of Sub-

division for paratroopers problem (a) Whole (b) Magnified 

  

 

(a) 

 

(b) 

Fig. 18 Graph of Percentage of error vs. Number of Sub-

division for horizontal deflection problem (a) Whole (b) 

Magnified 
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In the block-type hand brake (moment of frictional forces) 

problem, the sequence of the most accurate numerical integration 

method has started forming when the number of intervals was 6. 

When the number of intervals was 6n (where n = 1, 2, 3, 4.....), 

Weddle’s method was found to be the most accurate. But when 

the number of intervals changed to 6n + 2 or 6n + 4, Simpson’s 

1/3 method was found to be the most accurate. Simpson’s 3/8 

method was found to be the most accurate when the number of 

intervals was 6n + 3. The trapezoidal method was found to be the 

most accurate when a number of intervals switched to 6n + 1 or 

6n + 5. The visual proof of the aforementioned sentences is 

shown in Fig. 19.   

 

(a) 

 

(b) 

Fig. 19 Graph of Percentage of error vs. Number of Sub-

division for block-type hand brake (moment of frictional forces) 

problem (a) Whole (b) Magnified 

In the block-type hand brake (moment of normal forces) 

problem, the sequence of the most accurate numerical integration 

method has started forming when the number of intervals was 6. 

When the number of intervals was 6n (where n = 1, 2, 3, 4.....), 

Weddle’s method was found to be the most accurate. But when 

the number of intervals changed to 6n + 2 or 6n + 4, Simpson’s 

1/3 method was found to be the most accurate. Simpson’s 3/8 

method was found to be the most accurate when the number of 

intervals was 6n + 3. The trapezoidal method was found to be the 

most accurate when a number of intervals switched to 6n + 1 or 

6n + 5. The visual proof of the aforementioned sentences is 

shown in Fig. 20.   

In the speed of block problem, the sequence of the most 

accurate numerical integration method has started forming when 

the number of intervals was 6. When the number of intervals was 

6n (where n = 1, 2, 3, 4.....), Weddle’s method was found to be 

the most accurate. But when the number of intervals changed to 

6n + 2 or 6n + 4, Simpson’s 1/3 method was found to be the most 

accurate. Simpson’s 3/8 method was found to be the most 

accurate when the number of intervals was 6n + 3. The 

trapezoidal method was found to be the most accurate when a 

number of intervals switched to 6n + 1 or 6n + 5. The visual proof 

of the aforementioned sentences is shown in Fig. 21. 

 

(a) 

 

(b) 

Fig. 20 Graph of Percentage of error vs. Number of Sub-

division for block-type hand brake (moment of frictional forces) 

problem (a) Whole (b) Magnified 

  

 

(a) 

 

(b) 

Fig. 21 Graph of Percentage of error vs. Number of Sub-

division for speed of block problem (a) Whole (b) Magnified 
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(a) 

 

(b) 

Fig. 22 Graph of Percentage of error vs. Number of Sub-

division for rocket velocity problem (a) Whole (b) Magnified 

In the rocket velocity problem, the sequence of the most 

accurate numerical integration method has started forming when 

the number of intervals was 6. When the number of intervals was 

6n (where n = 1, 2, 3, 4.....), Weddle’s method was found to be 

the most accurate. But when the number of intervals changed to 

6n + 2 or 6n + 4, Simpson’s 1/3 method was found to be the most 

accurate. Simpson’s 3/8 method was found to be the most 

accurate when the number of intervals was 6n + 3. The 

trapezoidal method was found to be the most accurate when a 

number of intervals switched to 6n + 1 or 6n + 5. The visual proof 

of the aforementioned sentences is shown in Fig. 22.   

In the gear box problem, the sequence of the most accurate 

numerical integration method has started forming when the 

number of intervals was 6. When the number of intervals was 6n 

(where n = 1, 2, 3, 4.....), Weddle’s method was found to be the 

most accurate. But when the number of intervals changed to 6n 

+ 2 or 6n + 4, Simpson’s 1/3 method was found to be the most 

accurate. Simpson’s 3/8 method was found to be the most 

accurate when the number of intervals was 6n + 3. The 

trapezoidal method was found to be the most accurate when a 

number of intervals switched to 6n + 1 or 6n + 5. The visual proof 

of the aforementioned sentences is shown in Fig. 23.   

5 Discussion 

The solved problems along with their sequences of accurate 

methods are shown below with a Sunburst Chart as shown in Fig. 

24. In the chart, ‘W’=Weddle’s Rule, ‘T’=Trapezoidal Rule, 

‘S1/3’= Simpson’s 1/3 Rule, and ‘S3/8’=Simpson’s 3/8 Rule. 

From Fig. 24, it is clearly visible that most of the selected 

engineering problems follow a common sequence of ‘W-T-S1/3-

S3/8-S1/3-T-W’. In total, 13 out of 17 problems exhibit this 

periodic sequence of accuracy. Also, 2 out of 17 demonstrate a 

sequence of ‘W-S3/8-S1/3-S3/8-S1/3-S3/8-W’. Interestingly, 

trapezoidal method is never the most accurate one for these two 

problems. Finally, 2 out of 17 problems show a sequence of ‘W-

T-W-T-W-S3/8-W’. Simpson’s 1/3 is never the most accurate 

method for these two problems.  

 

(a) 

 

(b) 

Fig. 23 Graph of Percentage of error vs. Number of Sub-

division for gear box problem (a) Whole (b) Magnified 

6 Conclusion 

In our paper, some integration problems were brought 

together and solved by using Python 3.8. The graphs and the data 

for individual problems were found using Matplotlib and Pandas 

respectively. The problems were chosen meticulously according 

to their application in the different engineering fields. By 

analyzing the problems, it was found that there was no single 

numerical integration method among the Newton-Cotes methods 

whose accuracy was constantly maintained throughout the 

interval. Rather, it is seen that with the change of interval, the 

most accurate method changes and there is an interesting pattern 

of accuracy that is followed in each engineering problem. This 

will give insights to the scientists and engineers working in the 

field, on what methods they can use according to their necessary 

accuracy demand of their industries. This can further be extended 

to the other engineering applications as well so that the most 

accurate value within a particular interval can be known.  
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Fig. 24 Demonstration of all the engineering problems with their accuracy sequence by a Sunburst Chart 
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