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ABSTRACT   

To describe the interior phenomena of the mysterious problems around the real world, non-linear partial differential equations 
(NLPDEs) plays a substantial role, for which construction of analytic solutions of those is most important. This paper stands for a goal 

to find fresh and wide-ranging solutions to some familiar NLPDEs namely the non-linear cubic Klein-Gordon (cKG) equation and the 

non-linear Benjamin-Ono (BO) equation. A wave variable transformation is made use to convert the mentioned equations into ordinary 

differential equations. To acquire the desired precise exact travelling wave solutions to the above-stated equations, the rational (𝐺′/𝐺)-

expansion method is employed. Consequently, three types of equipped solutions are successfully come out in the forms of hyperbolic, 

trigonometric and rational functions in a compatible way. To analyse the physical problems arisen relating to nonlinear complex 

dynamical systems, our obtained solutions might be most helpful. So far we know, these achieved solutions are different than those in 

the literature. The applied method is efficient and reliable which might further be used to find different and novel solutions to many 

other NLPDEs successfully in research field. 
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1 Introduction   

In this new era, nonlinear phenomena have arisen in a wide 

range in the area of extensive physical science and mathematics. 

The nonlinear mechanism of nature can be depicted by NLPDEs. 

For this reason, with the rapid development of nonlinear 

sciences, it has debuted with a lot of importance in physical 

science and mathematics and many research works have been 

done to analyse these equations. A special case, the closed form 

solutions of NLPDEs bears significant role to delineate many 
models concerning the underlying mechanisms of real world. 

Subsequently, research on this topic is becoming as a matter of 

attraction in the field of nonlinear science day by day. With this 

importance, for the analytical solutions of NLPDEs, many 

traditional techniques have been emerged and implemented to 

solve various kinds of problems such as the Adomian 

decomposition method [1]-[2], the tanh function method [3]-[4], 

the simplest equation method [5]-[6], the Jacobi elliptic function 

method [7]-[8], the expansion function method [9]-[10], the 

modified simple equation method [11]-[12], the (𝐺′/𝐺)-

expansion method [13]-[14], the cosh function method [15]-[16], 
the homotopy perturbation method [17]-[18], the multiple exp-

function method [19]-[20], the Bernoulli sub-ODE method [21]-

[22], the homotopy analysis method [23]-[24], the variational 

iteration method [25]-[26], the modified tanh-coth method and 

the extended Jacobi elliptic function method [27], the He 

homotopy perturbation method [28]-[29], the homogeneous 

balance method [30], the inverse scattering method [31], the 

Backlund transformation method [32]-[33], the extended 

modified direct algebraic method [34]-[37]. In this paper, we 

have described the rational (𝐺′/𝐺)-expansion method [38]-[41]. 

2 Explanation of the Technique 

Consider the following NLPDE: 

 

𝐹(𝑢, 𝑢𝑥 , 𝑢𝑡 , 𝑢𝑥𝑥 , 𝑢𝑡𝑡 , 𝑢𝑡𝑥 ⋯ ) = 0 (1) 

where 𝑢 = 𝑢(𝑥, 𝑡) and the subscripts in 𝑢 represents partial 

derivatives. Followings are the main steps of the rational 
(𝐺′/𝐺)-expansion method: 

First step: Introduce the transformation   

 𝑢(𝑥, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑥 ± 𝑣𝑡 (2) 

where 𝑣 stands for the wave velocity. This transformation 

reduces Eq. (1) to the ordinary differential equation with 

respect to 𝜉, 

𝑄(𝑈, 𝑈′, 𝑈′′, 𝑈′′′, ⋯ ) = 0 (3) 

Second step: Take anti-derivative of Eq. (3) as much as 

possible; the integral constant may be considered as zero for 

seeking solitary wave solutions. 

Third step: Consider the solution of Eq. (3) as follows: 

𝑈(𝜉) =
∑ 𝑎𝑖(𝐺′/𝐺)

𝑖𝑛
𝑖=0

∑ 𝑏𝑖(𝐺′/𝐺)𝑖𝑛
𝑖=0

  (4) 

with unknown constants 𝑎𝑖 and 𝑏𝑖(𝑖 = 0,1,2, ⋯ , 𝑛) in which at 

least one of 𝑎𝑛 and 𝑏𝑛 is non-zero. 𝐺 = 𝐺(𝜉) satisfies the 

ordinary differential equation, 

𝐺′′(𝜉) + 𝜆𝐺′(𝜉) + 𝜇𝐺(𝜉) = 0 (5) 

where  𝜆 and 𝜇 are real parameters. Eq. (5) has turned into 

𝑑

𝑑𝜉
(𝐺′/𝐺) = −(𝐺′/𝐺)2 − 𝜆(𝐺′/𝐺) − 𝜇 (6) 

Then we have the general solutions of Eq. (5) (or equivalent to 

Eq. (6)) as follows: 
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(𝐺′/𝐺) = −
𝜆

2
+

√𝜆2−4𝜇

2
(

𝐴𝑠𝑖𝑛ℎ((√𝜆2−4𝜇/2)𝜉)+𝐵𝑐𝑜𝑠ℎ((√𝜆2−4𝜇/2)𝜉)

𝐴𝑐𝑜𝑠ℎ((√𝜆2−4𝜇/2)𝜉)+𝐵𝑠𝑖𝑛ℎ((√𝜆2−4𝜇/2)𝜉)
), 𝜆2 −

4𝜇 > 0 

(7) 

(𝐺′/𝐺) = −
𝜆

2
+

√4𝜇−𝜆2

2
(

−𝐴𝑠𝑖𝑛((√4𝜇−𝜆2/2)𝜉)+𝐵𝑐𝑜𝑠((√4𝜇−𝜆2/2)𝜉)

𝐴𝑐𝑜𝑠((√4𝜇−𝜆2/2)𝜉)+𝐵𝑠𝑖𝑛((√4𝜇−𝜆2/2)𝜉)
), 𝜆2 −

4𝜇 < 0 

(8) 

(𝐺′/𝐺) = −
𝜆

2
+

𝐵

𝐴+𝐵𝜉
 ,   

𝜆2 − 4𝜇 = 0    

(9) 

where 𝐴 and 𝐵 are real parameters. 

Fourth step: Determine 𝑛 by applying homogeneous balance to 

Eq. (3) for the degree of 𝑈(𝜉) as 𝑛. Then 

𝑑𝑒𝑔 [
𝑑𝑛𝑈(𝜉)

𝑑𝜉𝑚
] = 𝑛 + 𝑚, 𝑑𝑒𝑔 [𝑈𝑚 (

𝑑𝑙𝑈(𝜉)

𝑑𝜉𝑙
)

𝑝

] = 𝑚𝑛 +

𝑝(𝑛 + 𝑙).   
 

Fifth step: Eq. (3) with Eqs. (4), (5) makes a polynomial 
(𝐺′/𝐺). Set each coefficient to zero and solve them by the 

computer software Maple to calculate the values of 𝑎𝑖, 𝑏𝑖, 𝜇 and 

𝑣. 

Sixth step: Inserting the values determined in fifth step along 

with the outcomes given in Eqs. (7)-(9) into solution Eq. (4) 

provides the solutions of Eq. (1). 

3 Implementation of the Technique 

Herein, the suggested scheme is applied to examine the exact 

analytic solutions to the considered equations. 

3.1 The cKG equation 

The cKG equation is 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 − 𝑢𝑡𝑡 + 𝑎𝑢 + 𝑏𝑢3 = 0  (10) 

The wave variable transformation  𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑥 +
𝑦 − 𝑐𝑡  reduces Eq. (10) into the following equation: 

(2 − 𝑐2)𝑈′′ + 𝑎𝑈 + 𝑏𝑈3 = 0 (11) 

Due to homogeneous balance method, Eq. (11) gives 𝑛 = 1 and 

Eq. (4) turns into the form 

𝑈(𝜉) =
𝑎0+𝑎1(𝐺′/𝐺)

𝑏0+𝑏1(𝐺′/𝐺)
  (12) 

Inserting Eq. (12) into Eq. (11) provides a polynomial in 
(𝐺′/𝐺). Set the coefficients to zero and solved by 

computational software Maple. Accordingly, the following 

outcomes for 𝑎0, 𝑎1, 𝑏0, 𝑏1 and 𝑐 are obtained: 

Set-1: 

𝑎0 = ±
𝑏1

2
√

𝑎(−𝜆2+4𝜇)

𝑏
, 𝑎1 =  0, 𝑏0 =

𝑏1𝜆

2
, 𝑐 =

±√
2(𝑎+4𝜇−𝜆2)

−𝜆2+4𝜇
 

(13) 

Set-2: 

 

𝑎0 = ∓(2𝑏1𝜇 − 𝜆𝑏0)√
𝑎

𝑏(−𝜆2+4𝜇)
 ,  

𝑎1 = ±(2𝑏0 − 𝑏1𝜆)√
𝑎

𝑏(−𝜆2+4𝜇)
 ,  

𝑐 = ±√
2(𝑎+4𝜇−𝜆2)

(−𝜆2+4𝜇)
  

(14) 

Set-3: 

𝑎0 =
b1(−2μ+λ(

λ

2
±

1

6
√−12μ+3λ2))√−3ab

b√−12μ+3λ2
, 

𝑎1 = ±
√−3ab

3b
b1, 

𝑏0 = (
𝜆

2
±

1

6
√−12𝜇 + 3𝜆2) 𝑏1,   

𝑐 = ±√
2(𝑎+4𝜇−𝜆2)

(−𝜆2+4𝜇)
  

(15) 

Set-4: 

𝑎0 = −
b1(−2μ+λ(

λ

2
±

1

6
√−12μ+3λ2))√−3ab

b√−12μ+3λ2
,  

𝑎1 = ±
√−3ab

3b
b1 , 

𝑏0 = (
𝜆

2
±

1

6
√−12𝜇 + 3𝜆2) 𝑏1,  

𝑐 = ±√
2(𝑎 + 4𝜇 − 𝜆2)

(−𝜆2 + 4𝜇)
 

(16) 

Eq. (12) along with Eq. (13) becomes 

𝑈1(𝜉) = √
𝑎

𝑏

√−𝜆2+4𝜇

𝜆+2(𝐺′/𝐺)
,  (17) 

Where, 

𝜉 = 𝑥 + 𝑦 ∓ √
2(𝑎+4𝜇−𝜆2)

−𝜆2+4𝜇
𝑡. 

 

Utilizing the solutions in Eqs. (7)-(9) from Eq. (17), we make 

available the following solutions to Eq. (10) in the following 
three different forms: 

Case 1: When 𝜆2 − 4𝜇 > 0, 
Eq. (12) along with Eq. (13) becomes 

𝑈11
(𝜉)

= 𝑖√
𝑎

𝑏

𝐴𝑐𝑜𝑠ℎ ((√𝜆2 − 4𝜇/2)𝜉) + 𝐵𝑠𝑖𝑛ℎ ((√𝜆2 − 4𝜇/2)𝜉)

𝐴𝑠𝑖𝑛ℎ ((√𝜆2 − 4𝜇/2)𝜉) + 𝐵𝑐𝑜𝑠ℎ ((√𝜆2 − 4𝜇/2)𝜉)
 

(18) 

where, 

𝜉 = 𝑥 + 𝑦 ∓ √
2(𝑎 + 4𝜇 − 𝜆2)

−𝜆2 + 4𝜇
𝑡  
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For 𝐴 = 0  and  𝐵 ≠ 0, we get 

𝑈12
(𝜉) = 𝑖√

𝑎

𝑏
 𝑡𝑎𝑛ℎ ((√𝜆2 − 4𝜇/2)𝜉)  (19) 

Assigning 𝐴 ≠ 0  and  𝐵 = 0 yields 

𝑈13
(𝜉) = 𝑖√

𝑎

𝑏
 𝑐𝑜𝑡ℎ ((√𝜆2 − 4𝜇/2) 𝜉) (20) 

Case 2: For 𝜆2 − 4𝜇 < 0, 

𝑈14
(𝜉) = √

𝑎

𝑏

𝐴𝑐𝑜𝑠 ((√4𝜇−𝜆2/2)𝜉) + 𝐵𝑠𝑖𝑛 ((√4𝜇−𝜆2/2)𝜉)

−𝐴𝑠𝑖𝑛 ((√4𝜇−𝜆2/2)𝜉) + 𝐵𝑐𝑜𝑠 ((√4𝜇−𝜆2/2)𝜉)
 (21) 

where, 

𝜉 = 𝑥 + 𝑦 ∓ √
2(𝑎+4𝜇−𝜆2)

−𝜆2+4𝜇
𝑡.  

Appling 𝐴 = 0  and  𝐵 ≠ 0, provides 

𝑈15
(𝜉) = √

𝑎

𝑏
 𝑡𝑎𝑛 ((√4𝜇−𝜆2/2) 𝜉) (22) 

Using 𝐴 ≠ 0  and  𝐵 = 0 gives 

U16
(ξ) = −√

a

b
 cot ((√4μ−λ2/2)ξ)  (23) 

Case 3: If 𝜆2 − 4𝜇 = 0, the method yields stationary wave 
solutions and thus have not been documented. 

Using the similar procedure for the all-other sets of solutions, 

as we have applied for set-1, we obtain the hyperbolic solutions 

for 𝜆2 − 4𝜇 > 0, the trigonometric solutions for 𝜆2 − 4𝜇 < 0, 

and 𝜆2 − 4𝜇 = 0 gives the stationary wave solutions.  

3.2 The BO equation 

Consider the BO equation 

𝑢𝑡 + ℎ𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0  (24) 

Using the transformation 𝑢(𝑥, 𝑡) = 𝑈(𝜉), 𝜉 = 𝑥 − 𝑐𝑡, Eq. (24) 

reduces to the ODE 

−𝑐𝑈′ + ℎ𝑈′′ + 𝑈𝑈′ = 0 (25) 

Integrating Eq. (25) gives 

𝑟 − 𝑐𝑈 + ℎ𝑈′ +
1

2
𝑈2 = 0,   (26) 

where 𝑟 is the integral constant. Appling homogeneous balance 

to 𝑈2 and 𝑈′ produces 𝑛 = 1 for which the solution (4) 
becomes 

𝑈(𝜉) =
𝑎0+𝑎1(𝐺′/𝐺)

𝑏0+𝑏1(𝐺′/𝐺)
  (27) 

where at least one of 𝑎1 or 𝑏1 is non zero.  

Inserting Eq. (27) into Eq. (26) makes a polynomial in (𝐺′/𝐺). 
Setting the coefficients to zero and calculating by computer 

software Maple provides the following values for 𝑎0, 𝑎1, 𝑏0, 𝑏1 

and 𝑐: 

𝑎0 =
𝑏1

2ℎ
{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟},  

𝑎1 = 𝑏1(𝑐 ± √𝑐2 − 2𝑟),  

𝑏0 =
𝑏1

2ℎ
(ℎ𝜆 ± √𝑐2 − 2𝑟),  

(28) 

 

Eq. (27) together with the values in Eq. (28) reduces to 

𝑈(𝜉)

=
{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟} + 2ℎ(𝑐 ± √𝑐2 − 2𝑟)(𝐺′/𝐺)

(ℎ𝜆 ± √𝑐2 − 2𝑟) + 2ℎ(𝐺′/𝐺)
 (29) 

where 𝜉 = 𝑥 − 𝑐𝑡. 
Eq. (29) with the aid of Eqs. (7)-(9) serves the following exact 

solutions to Eq. (24) in three types as hyperbolic, trigonometric 

and rational: 

Case 1: If 𝜆2 − 4𝜇 > 0, 

𝑈1(𝜉)

=

{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟}

+2ℎ(𝑐 ± √𝑐2 − 2𝑟) (−
𝜆
2

+
√𝜆2 − 4𝜇

2
×

𝐴𝑠𝑖𝑛ℎ ((√𝜆2 − 4𝜇/2)𝜉) + 𝐵𝑐𝑜𝑠ℎ ((√𝜆2 − 4𝜇/2)𝜉)

𝐴𝑐𝑜𝑠ℎ ((√𝜆2 − 4𝜇/2)𝜉) + 𝐵𝑠𝑖𝑛ℎ ((√𝜆2 − 4𝜇/2)𝜉)
)

(ℎ𝜆 ± √𝑐2 − 2𝑟) + 2ℎ (−
𝜆
2

+
√𝜆2 − 4𝜇

2
×

𝐴𝑠𝑖𝑛ℎ ((√𝜆2 − 4𝜇/2)𝜉) + 𝐵𝑐𝑜𝑠ℎ ((√𝜆2 − 4𝜇/2)𝜉)

𝐴𝑐𝑜𝑠ℎ ((√𝜆2 − 4𝜇/2)𝜉) + 𝐵𝑠𝑖𝑛ℎ ((√𝜆2 − 4𝜇/2)𝜉)
)

 
(30) 

where 𝜉 = 𝑥 − 𝑐𝑡. 

If 𝐴 = 0, 𝐵 ≠ 0, then 

𝑈11
(𝜉)

=

{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟}

+2ℎ(𝑐 ± √𝑐2 − 2𝑟) (−
𝜆
2

+
√𝜆2 − 4𝜇

2
× 𝑐𝑜𝑡ℎ ((√𝜆2 − 4𝜇/2)𝜉))

(ℎ𝜆 ± √𝑐2 − 2𝑟) + 2ℎ (−
𝜆
2

+
√𝜆2 − 4𝜇

2
× 𝑐𝑜𝑡ℎ ((√𝜆2 − 4𝜇/2)𝜉))

 
(31) 

Again, for 𝐴 ≠ 0, 𝐵 = 0, 

𝑈12
(𝜉)

=

{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟}

+2ℎ(𝑐 ± √𝑐2 − 2𝑟) (−
𝜆
2

+
√𝜆2 − 4𝜇

2
× 𝑡𝑎𝑛ℎ ((√𝜆2 − 4𝜇/2)𝜉))

(ℎ𝜆 ± √𝑐2 − 2𝑟) + 2ℎ (−
𝜆
2

+
√𝜆2 − 4𝜇

2
× 𝑡𝑎𝑛ℎ ((√𝜆2 − 4𝜇/2)𝜉))

 
(32) 

Case 2: For 𝜆2 − 4𝜇 < 0,  

𝑈2(𝜉)

=

{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟}

+2ℎ(𝑐 ± √𝑐2 − 2𝑟) (−
𝜆
2

+
√4𝜇 − 𝜆2

2
×

−𝐴𝑠𝑖𝑛 ((√4𝜇 − 𝜆2/2)𝜉) + 𝐵𝑐𝑜𝑠 ((√4𝜇 − 𝜆2/2)𝜉)

𝐴𝑐𝑜𝑠 ((√4𝜇 − 𝜆2/2)𝜉) + 𝐵𝑠𝑖𝑛 ((√4𝜇 − 𝜆2/2)𝜉)
)

(ℎ𝜆 ± √𝑐2 − 2𝑟) + 2ℎ (−
𝜆
2

+
√4𝜇 − 𝜆2

2
×

−𝐴𝑠𝑖𝑛 ((√4𝜇 − 𝜆2/2)𝜉) + 𝐵𝑐𝑜𝑠 ((√4𝜇 − 𝜆2/2)𝜉)

𝐴𝑐𝑜𝑠 ((√4𝜇 − 𝜆2/2)𝜉) + 𝐵𝑠𝑖𝑛 ((√4𝜇 − 𝜆2/2)𝜉)
)

 
(33) 

where 𝜉 = 𝑥 − 𝑐𝑡. 

Assign 𝐴 = 0, 𝐵 ≠ 0, then 

𝑈21
(𝜉)

=

{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟}

+2ℎ(𝑐 ± √𝑐2 − 2𝑟) (−
𝜆
2

+
√4𝜇 − 𝜆2

2
× 𝑐𝑜𝑡 ((√4𝜇 − 𝜆2/2)𝜉))

(ℎ𝜆 ± √𝑐2 − 2𝑟) + 2ℎ (−
𝜆
2

+
√4𝜇 − 𝜆2

2
× 𝑐𝑜𝑡 ((√4𝜇 − 𝜆2/2)𝜉))

 

(34) 

Fix 𝐴 ≠ 0, 𝐵 = 0, then  

𝑈22
(𝜉)

=

{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟} + 2ℎ(𝑐 ± √𝑐2 − 2𝑟) (−
𝜆
2

+
√4𝜇 − 𝜆2

2
× (−𝑡𝑎𝑛 ((√4𝜇 − 𝜆2/2)𝜉)))

(ℎ𝜆 ± √𝑐2 − 2𝑟) + 2ℎ (−
𝜆
2

+
√4𝜇 − 𝜆2

2
× (−𝑡𝑎𝑛 ((√4𝜇 − 𝜆2/2)𝜉)))

 (35) 

Case 3: When 𝜆2 − 4𝜇 = 0, 

𝑈3(𝜉)

=
{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟} + 2ℎ(𝑐 ± √𝑐2 − 2𝑟) (−

𝜆
2

+
𝐵

𝐴 + 𝐵𝜉
)

(ℎ𝜆 ± √𝑐2 − 2𝑟) + 2ℎ (−
𝜆
2

+
𝐵

𝐴 + 𝐵𝜉
)

 (36) 
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where 𝜉 = 𝑥 − 𝑐𝑡. 

Put 𝐴 = 0, 𝐵 ≠ 0, 

𝑈31
(𝜉)

=
{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟} + 2ℎ(𝑐 ± √𝑐2 − 2𝑟) (−

𝜆
2

+
1
𝜉

)

(ℎ𝜆 ± √𝑐2 − 2𝑟) + 2ℎ (−
𝜆
2

+
1
𝜉

)
 (37) 

Choose 𝐴 ≠ 0, 𝐵 = 0, then 

𝑈32
(𝜉)

=
{(𝑐 + ℎ𝜆)(𝑐 ± √𝑐2 − 2𝑟) − 2𝑟} + 2ℎ(𝑐 ± √𝑐2 − 2𝑟) (−

𝜆
2

)

(ℎ𝜆 ± √𝑐2 − 2𝑟) + 2ℎ (−
𝜆
2

)
 

(38) 

4 Results, discussion and graphical representations 

To analyse the problems clearly and to describe the solutions 

of the phenomena, a graphical representation of the solutions 

can be an effective tool to brief the commentaries. On account 

of this, we provide different types of physical appearances of 

the solutions bearing the actual form of solitary waves (Fig. 1-

Fig. 6). The plots are of kink shape soliton, cuspone, periodic 

solutions etc. Fig. 1 stands for kink type soliton of solution (17) 

for 𝜆 = 3, 𝜇 = 2, 𝑐 = 1, 𝑎 = 1, 𝑏 = 1,  𝑥 = 0 in the interval 

−10 ≤ 𝑦 ≤ 10 and −10 ≤ 𝑡 ≤ 10. Fig. 2 characterizes cuspon 

which is depicted for solution (17) for 𝜆 = 3, 𝜇 = 3, 𝑐 = −1, 

𝑎 = 1, 𝑏 = 1,  𝑥 = 0 within −10 ≤ 𝑦 ≤ 10 and −10 ≤ 𝑡 ≤
10. Fig. 3 indicates periodic soliton generated from the solution 

(17) for 𝜆 = 3, 𝜇 = 3, 𝑐 = 1, 𝑎 = 1, 𝑏 = 1,  𝑥 = 0 in −10 ≤
𝑦 ≤ 10 and −10 ≤ 𝑡 ≤ 10. Fig. 4 indicates cuspon plotted for 

solution (17) for 𝜆 = 3, 𝜇 = 2, 𝑐 = −1, 𝑎 = 1, 𝑏 = 1,  𝑥 = 0 

for the interval −10 ≤ 𝑦 ≤ 10 and −10 ≤ 𝑡 ≤ 10. Fig. 5 

designates singular kink type soliton emerged from the solution 

(29) for 𝜆 = 4, 𝜇 = 2, 𝑐 = −5, ℎ = −5, 𝑟 = 1 within −10 ≤
𝑥 ≤ 10 and −10 ≤ 𝑡 ≤ 10. Fig. 6 represents kink soliton from 

the solution (29) for 𝜆 = 7, 𝜇 = 3, 𝑐 = −5, ℎ = −5, 𝑟 = −1 in 

the intervals −10 ≤ 𝑥 ≤ 10 and −10 ≤ 𝑡 ≤ 10. Fig. 7 

designates cuspon emerged from solution (29) for 𝜆 = 3, 𝜇 =
4, 𝑐 = 5, ℎ = −1, 𝑟 = −1 for −10 ≤ 𝑥 ≤ 10 and −10 ≤ 𝑡 ≤
10. Fig. 8 designates singular kink type soliton emerged from 

the solution (29) for 𝜆 = −3, 𝜇 = 0, 𝑐 = 5, ℎ = −3, 𝑟 = 1 in 

the interval −10 ≤ 𝑥 ≤ 10 and −10 ≤ 𝑡 ≤ 10. 

 

Fig. 1 

 

Fig. 2 

 

Fig. 3 

 

Fig. 4 

 

Fig. 5 
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Fig. 6 

 

Fig. 7 

 

Fig. 8 

5 Conclusions 

The determination of this article was to investigate closed form 
analytic solutions to the cKG and BO equations by employing 

the rational (G^'/G)-expansion method. Consequently, different 

and advanced travelling wave solutions to the considered 

equations have successfully been furnished, on comparison to 

other methods available in the literature. Our derived solutions 

might effectively be helpful to depict the interior behaviors of 

internal mechanisms of nature world like describing shallow 

water waves, acoustic waves etc. The gained hyperbolic, 

trigonometric and rational function solutions together with the 

physical appearances show the efficiency and the reliability of 

our employed method which might be used in further research 
works to find fresh and further general solutions of any other 

NLPDEs in different fields. 
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