A Review on Developments in Manufacturing Process and Mechanical Properties of Natural Fiber Composites

Authors

  • Md. Maruf Billah Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram-4349, Bangladesh
  • Md. Sanaul Rabbi Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram-4349, Bangladesh
  • Afnan Hasan Department of Mechanical Engineering, Chittagong University of Engineering & Technology, Chattogram-4349, Bangladesh

DOI:

https://doi.org/10.38032/jea.2021.01.003

Keywords:

Natural Fiber Composites, Manufacturing Processes, Mechanical Properties

Abstract

From the last few decades, the study of natural fiber composite materials has been gaining strong attention among researchers, scientists, and engineers. Natural fiber composite materials are becoming good alternatives to conventional materials because of their lightweight, high specific strength, low thermal expansion, eco-friendly, low manufacturing cost, nonabrasive and bio-degradable characteristics. It is proven that natural fiber is a great alternative to synthetic fiber in the sector of automobiles, railway, and aerospace. Researchers are developing various types of natural fiber-reinforced composites by combining different types of natural fiber such as jute, sisal, coir, hemp, abaca, bamboo, sugar can, kenaf, banana, etc. with various polymers such as polypropylene, epoxy resin, etc. as matrix material. Based on the application and required mechanical and thermal properties, numerous natural fiber-based composite manufacturing processes are available such as injection molding, compression molding, resin transfer molding, hand lay-up, filament welding, pultrusion, autoclave molding, additive manufacturing, etc. The aim of the paper is to present the developments of various manufacturing processes of natural fiber-based composites and obtained mechanical properties.

References

Pickering, K.L., Efendy, M.A. and Le, T.M., 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, pp.98-112. DOI: https://doi.org/10.1016/j.compositesa.2015.08.038

Malkapuram, R., Kumar, V. and Negi, Y.S., 2009. Recent development in natural fiber reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 28(10), pp.1169-1189. DOI: https://doi.org/10.1177/0731684407087759

Saheb, D.N. and Jog, J.P., 1999. Natural fiber polymer composites: a review. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 18(4), pp.351-363. DOI: https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X

Shah, D.U., Porter, D. and Vollrath, F., 2014. Can silk become an effective reinforcing fibre? A property comparison with flax and glass reinforced composites. Composites Science and Technology, 101, pp.173-183. DOI: https://doi.org/10.1016/j.compscitech.2014.07.015

Pickering, K.L., Beckermann, G.W., Alam, S.N. and Foreman, N.J., 2007. Optimising industrial hemp fibre for composites. Composites Part A: Applied Science and Manufacturing, 38(2), pp.461-468. DOI: https://doi.org/10.1016/j.compositesa.2006.02.020

Bos, H.L., Van Den Oever, M.J.A. and Peters, O.C.J.J., 2002. Tensile and compressive properties of flax fibres for natural fibre reinforced composites. Journal of Materials Science, 37(8), pp.1683-1692. DOI: https://doi.org/10.1023/A:1014925621252

Dos Santos, P.A., Giriolli, J.C., Amarasekera, J. and Moraes, G., 2008, September. Natural fibers plastic composites for automotive applications. In 8th Annual automotive composites conference and exhibition (ACCE 2008). Troy, MI: SPE Automotive & Composites Division (pp. 492-500).

Holbery, J. and Houston, D., 2006. Natural-fiber-reinforced polymer composites in automotive applications. Jom, 58(11), pp.80-86. DOI: https://doi.org/10.1007/s11837-006-0234-2

Summerscales, J., Dissanayake, N.P., Virk, A.S. and Hall, W., 2010. A review of bast fibres and their composites. Part 1–Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 41(10), pp.1329-1335. DOI: https://doi.org/10.1016/j.compositesa.2010.06.001

Zampaloni, M., Pourboghrat, F., Yankovich, S.A., Rodgers, B.N., Moore, J., Drzal, L.T., Mohanty, A.K. and Misra, M., 2007. Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Composites Part A: Applied Science and Manufacturing, 38(6), pp.1569-1580. DOI: https://doi.org/10.1016/j.compositesa.2007.01.001

Ho, M.P., Wang, H., Lee, J.H., Ho, C.K., Lau, K.T., Leng, J. and Hui, D., 2012. Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering, 43(8), pp.3549-3562. DOI: https://doi.org/10.1016/j.compositesb.2011.10.001

Vallejos, M.E., Espinach, F.X., Julian, F., Torres, L., Vilaseca, F. and Mutje, P., 2012. Micromechanics of hemp strands in polypropylene composites. Composites Science and Technology, 72(10), pp.1209-1213. DOI: https://doi.org/10.1016/j.compscitech.2012.04.005

Matuana, L.M., Balatinecz, J.J., Sodhi, R.N.S. and Park, C.B., 2001. Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Science and Technology, 35(3), pp.191-201. DOI: https://doi.org/10.1007/s002260100097

Sun, Z.Y., Han, H.S. and Dai, G.C., 2010. Mechanical properties of injection-molded natural fiber-reinforced polypropylene composites: formulation and compounding processes. Journal of Reinforced Plastics and Composites, 29(5), pp.637-650. DOI: https://doi.org/10.1177/0731684408100264

Ramesh, M., Palanikumar, K. and Reddy, K.H., 2013. Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites. Composites Part B: Engineering, 48, pp.1-9. DOI: https://doi.org/10.1016/j.compositesb.2012.12.004

Masoodi, R. and Pillai, K.M., 2011. Modeling the processing of natural fiber composites made using liquid composite molding. Handbook of Bioplastics and Biocomposites Engineering Applications, ed. by S. Pilla, Scrivener-Wiley. DOI: https://doi.org/10.1002/9781118203699.ch3

Mohanty, A.K., Wibowo, A., Misra, M. and Drzal, L.T., 2004. Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Composites Part A: applied science and manufacturing, 35(3), pp.363-370. DOI: https://doi.org/10.1016/j.compositesa.2003.09.015

Drzal, L.T. and Madhukar, M., 1993. Fibre-matrix adhesion and its relationship to composite mechanical properties. Journal of Materials Science, 28(3), pp.569-610. DOI: https://doi.org/10.1007/BF01151234

Pandey, J.K., Ahn, S.H., Lee, C.S., Mohanty, A.K. and Misra, M., 2010. Recent advances in the application of natural fiber based composites. Macromolecular Materials and Engineering, 295(11), pp.975-989. DOI: https://doi.org/10.1002/mame.201000095

Medina, L., Schledjewski, R. and Schlarb, A.K., 2009. Process related mechanical properties of press molded natural fiber reinforced polymers. Composites Science and Technology, 69(9), pp.1404-1411. DOI: https://doi.org/10.1016/j.compscitech.2008.09.017

Elanchezhian, C., Ramnath, B.V., Ramakrishnan, G., Rajendrakumar, M., Naveenkumar, V. and Saravanakumar, M.K., 2018. Review on mechanical properties of natural fiber composites. Materials Today: Proceedings, 5(1), pp.1785-1790. DOI: https://doi.org/10.1016/j.matpr.2017.11.276

Cho, D., Seo, J.M., Lee, H.S., Cho, C.W., Han, S.O. and Park, W.H., 2007. Property improvement of natural fiber-reinforced green composites by water treatment. Advanced Composite Materials, 16(4), pp.299-314. DOI: https://doi.org/10.1163/156855107782325249

Bongarde, U.S. and Shinde, V.D., 2014. Review on natural fiber reinforcement polymer composites. International Journal of Engineering Science and Innovative Technology, 3(2), pp.431-436.

Feldmann, M., Heim, H.P. and Zarges, J.C., 2016. Influence of the process parameters on the mechanical properties of engineering biocomposites using a twin-screw extruder. Composites Part A: Applied Science and Manufacturing, 83, pp.113-119. DOI: https://doi.org/10.1016/j.compositesa.2015.03.028

Sui, G., Fuqua, M.A., Ulven, C.A. and Zhong, W.H., 2009. A plant fiber reinforced polymer composite prepared by a twin-screw extruder. Bioresource Technology, 100(3), pp.1246-1251. DOI: https://doi.org/10.1016/j.biortech.2008.03.065

Ariffin, A. and Ahmad, M.S.B., 2011. Single screw extruder in particulate filler composite. Polymer-Plastics Technology and Engineering, 50(4), pp.395-403. DOI: https://doi.org/10.1080/03602559.2010.543228

Sanjay, M.R. and Yogesha, B., 2017. Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution. Materials Today: Proceedings, 4(2), pp.2739-2747. DOI: https://doi.org/10.1016/j.matpr.2017.02.151

Prasad, V., Hunize, C.M., Abhiraj, R.I., Jospeh, M.A., Sekar, K. and Ali, M., 2019. Mechanical properties of flax fiber reinforced composites manufactured using hand layup and compression molding—a comparison. In Advances in Industrial and Production Engineering (pp. 781-789). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-13-6412-9_72

Williams, G.I. and Wool, R.P., 2000. Composites from natural fibers and soy oil resins. Applied Composite Materials, 7(5), pp.421-432. DOI: https://doi.org/10.1023/A:1026583404899

Rouison, D., Sain, M. and Couturier, M., 2003. Resin‐transfer molding of natural fiber–reinforced plastic. I. Kinetic study of an unsaturated polyester resin containing an inhibitor and various promoters. Journal of Applied Polymer Science, 89(9), pp.2553-2561. DOI: https://doi.org/10.1002/app.12461

Haiyan, L., Yong, L., Jun, X. and Dajun, H., 2009. Research on Automatic Tape-laying Technique for Composites-Calculation Method of Tape-laying Path on Free-form Surfaces [J]. Acta Aeronautica Et Astronautica Sinica, 9.

Yao, J., Sun, D., Yao, Z.Q., Zhang, P., Zhang, M.C. and Shi, R.H., 2011. Current situation and research progress of automated tape-laying technology for composites. Ji Xie She Ji Yu Yan Jiu( Machine Design and Research), 27(4), pp.60-65.

Grimshaw, M.N., Grant, C.G. and Diaz, J.M.L., 2001, May. Advanced technology tape laying for affordable manufacturing of large composite structures. In International sampe symposium and exhibition (pp. 2484-2494). SAMPE; 1999.

Serizawa, S., Inoue, K. and Iji, M., 2006. Kenaf‐fiber‐reinforced poly (lactic acid) used for electronic products. Journal of Applied Polymer Science, 100(1), pp.618-624. DOI: https://doi.org/10.1002/app.23377

Huda, M.S., Mohanty, A.K., Drzal, L.T., Schut, E. and Misra, M., 2005. “Green” composites from recycled cellulose and poly (lactic acid): physico-mechanical and morphological properties evaluation. Journal of Materials Science, 40(16), pp.4221-4229. DOI: https://doi.org/10.1007/s10853-005-1998-4

Huda, M.S., Drzal, L.T., Misra, M. and Mohanty, A.K., 2006. Wood‐fiber‐reinforced poly (lactic acid) composites: evaluation of the physicomechanical and morphological properties. Journal of Applied Polymer Science, 102(5), pp.4856-4869. DOI: https://doi.org/10.1002/app.24829

Huda, M.S., Drzal, L.T., Misra, M., Mohanty, A.K., Williams, K. and Mielewski, D.F., 2005. A study on biocomposites from recycled newspaper fiber and poly (lactic acid). Industrial & Engineering Chemistry Research, 44(15), pp.5593-5601. DOI: https://doi.org/10.1021/ie0488849

Huda, M.S., Drzal, L.T., Mohanty, A.K. and Misra, M., 2006. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid)(PLA) composites: a comparative study. Composites Science and Technology, 66(11-12), pp.1813-1824. DOI: https://doi.org/10.1016/j.compscitech.2005.10.015

Nyström, B., 2007. Natural fiber composites: optimization of microstructure and processing parameters (Doctoral dissertation, Luleå tekniska universitet).

Thomason, J.L. and Rudeiros-Fernández, J.L., 2018. A review of the impact performance of natural fiber thermoplastic composites. Frontiers in Materials, 5, p.60. DOI: https://doi.org/10.3389/fmats.2018.00060

Rowell, R.M., 1998. Economic opportunities in natural fiber-thermoplastic composites. In Science and Technology of Polymers and Advanced Materials (pp. 869-872). Springer, Boston, MA. DOI: https://doi.org/10.1007/978-1-4899-0112-5_76

Deringer, T., Gröschel, C. and Drummer, D., 2018. Influence of mold temperature and process time on the degree of cure of epoxy-based materials for thermoset injection molding and prepreg compression molding. Journal of Polymer Engineering, 38(1), pp.73-81. DOI: https://doi.org/10.1515/polyeng-2016-0409

Leong, Y.W., Thitithanasarn, S., Yamada, K. and Hamada, H., 2014. Compression and injection molding techniques for natural fiber composites. In Natural Fibre Composites (pp. 216-232). Woodhead Publishing. DOI: https://doi.org/10.1533/9780857099228.2.216

Farsi, M., 2012. Thermoplastic matrix reinforced with natural fibers: a study on interfacial behavior. Some critical issues for injection molding, pp.225-250. DOI: https://doi.org/10.5772/34527

Fang, Q. and Hanna, M.A., 1999. Rheological properties of amorphous and semicrystalline polylactic acid polymers. Industrial Crops and Products, 10(1), pp.47-53. DOI: https://doi.org/10.1016/S0926-6690(99)00009-6

Geethamma, V.G., Joseph, R. and Thomas, S., 1995. Short coir fiber‐reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. Journal of Applied Polymer Science, 55(4), pp.583-594. DOI: https://doi.org/10.1002/app.1995.070550405

Santos, J.D., Fajardo, J.I., Cuji, A.R., García, J.A., Garzón, L.E. and López, L.M., 2015. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers. Frontiers of Mechanical Engineering, 10(3), pp.287-293. DOI: https://doi.org/10.1007/s11465-015-0346-x

Kim, S.K., Lee, S.W. and Youn, J.R., 2002. Measurement of residual stresses in injection molded short fiber composites considering anisotropy and modulus variation. Korea-Australia Rheology Journal, 14(3), pp.107-114.

Lee, K.S., Lee, S.W., Youn, J.R., Kang, T.J. and Chung, K., 2001. Confocal microscopy measurement of the fiber orientation in short fiber reinforced plastics. Fibers and Polymers, 2(1), pp.41-50. DOI: https://doi.org/10.1007/BF02875227

White, J.R., 1985. On the layer removal analysis of residual stress. Journal of Materials Science, 20(7), pp.2377-2387. DOI: https://doi.org/10.1007/BF00556067

Folkes, M.J. and Russell, D.A.M., 1980. Orientation effects during the flow of short-fibre reinforced thermoplastics. Polymer, 21(11), pp.1252-1258. DOI: https://doi.org/10.1016/0032-3861(80)90189-5

Sain, M., Suhara, P., Law, S. and Bouilloux, A., 2005. Interface modification and mechanical properties of natural fiber-polyolefin composite products. Journal of Reinforced Plastics and Composites, 24(2), pp.121-130. DOI: https://doi.org/10.1177/0731684405041717

Bledzki, A.K., Mamun, A.A., Lucka-Gabor, M. and Gutowski, V.S., 2008. The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polymer Letters, 2(6), pp.413-422. DOI: https://doi.org/10.3144/expresspolymlett.2008.50

Snijder, M.H. and Bos, H.L., 2000. Reinforcement of polypropylene by annual plant fibers: optimisation of the coupling agent efficiency. Composite Interfaces, 7(2), pp.69-75. DOI: https://doi.org/10.1163/156855400300184235

Li, H. and Sain, M.M., 2003. High stiffness natural fiber‐reinforced hybrid polypropylene composites. Polymer-Plastics Technology and Engineering, 42(5), pp.853-862. DOI: https://doi.org/10.1081/PPT-120024999

Rana, A.K., Mandal, A. and Bandyopadhyay, S., 2003. Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Composites Science and Technology, 63(6), pp.801-806. DOI: https://doi.org/10.1016/S0266-3538(02)00267-1

Feldmann, M. and Bledzki, A.K., 2014. Bio-based polyamides reinforced with cellulosic fibres–processing and properties. Composites Science and Technology, 100, pp.113-120. DOI: https://doi.org/10.1016/j.compscitech.2014.06.008

Fink, H.P. and Ganster, J., 2006, December. Novel Thermoplastic Composites from Commodity Polymers and Man‐Made Cellulose Fibers. In Macromolecular Symposia (Vol. 244, No. 1, pp. 107-118). Weinheim: WILEY‐VCH Verlag. DOI: https://doi.org/10.1002/masy.200651210

Adekunle, K., Åkesson, D. and Skrifvars, M., 2010. Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural‐fiber reinforcement. Journal of Applied Polymer Science, 116(3), pp.1759-1765. DOI: https://doi.org/10.1002/app.31634

Idicula, M., Sreekumar, P.A., Joseph, K. and Thomas, S., 2009. Natural fiber hybrid composites—A comparison between compression molding and resin transfer molding. Polymer Composites, 30(10), pp.1417-1425. DOI: https://doi.org/10.1002/pc.20706

Milanese, A.C., Cioffi, M.O.H. and Voorwald, H.J.C., 2011. Mechanical behavior of natural fiber composites. Procedia Engineering, 10, pp.2022-2027. DOI: https://doi.org/10.1016/j.proeng.2011.04.335

Mallick, P.K., 2007. Fiber-reinforced composites: materials, manufacturing, and design. CRC press. DOI: https://doi.org/10.1201/9781420005981

Hu, R. and Lim, J.K., 2007. Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. Journal of Composite Materials, 41(13), pp.1655-1669. DOI: https://doi.org/10.1177/0021998306069878

Tatara, R.A., 2017. Compression molding. In Applied plastics engineering handbook (pp. 291-320). William Andrew Publishing. DOI: https://doi.org/10.1016/B978-0-323-39040-8.00014-6

Devi, L.U., Bhagawan, S.S. and Thomas, S., 1997. Mechanical properties of pineapple leaf fiber‐reinforced polyester composites. Journal of Applied Polymer Science, 64(9), pp.1739-1748. DOI: https://doi.org/10.1002/(SICI)1097-4628(19970531)64:9<1739::AID-APP10>3.0.CO;2-T

Le, T.M., 2016. Harakeke fibre as reinforcement in epoxy matrix composites and its hybridisation with hemp fibre (Doctoral dissertation, University of Waikato).

Islam, M.S., Pickering, K.L. and Foreman, N.J., 2011. Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. Journal of Applied Polymer Science, 119(6), pp.3696-3707. DOI: https://doi.org/10.1002/app.31335

Zhang, L. and Miao, M., 2010. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Composites Science and Technology, 70(1), pp.130-135. DOI: https://doi.org/10.1016/j.compscitech.2009.09.016

Graupner, N. and Müssig, J., 2011. A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly (lactic acid)(PLA) and poly (3-hydroxybutyrate)(PHB) composites. Composites Part A: Applied Science and Manufacturing, 42(12), pp.2010-2019. DOI: https://doi.org/10.1016/j.compositesa.2011.09.007

Ochi, S., 2008. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mechanics of Materials, 40(4-5), pp.446-452. DOI: https://doi.org/10.1016/j.mechmat.2007.10.006

Rong, M.Z., Zhang, M.Q., Liu, Y., Yang, G.C. and Zeng, H.M., 2001. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology, 61(10), pp.1437-1447. DOI: https://doi.org/10.1016/S0266-3538(01)00046-X

Le, T.M. and Pickering, K.L., 2015. The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Composites Part A: Applied Science and Manufacturing, 76, pp.44-53. DOI: https://doi.org/10.1016/j.compositesa.2015.05.005

Newman, R.H., Le Guen, M.J., Battley, M.A. and Carpenter, J.E., 2010. Failure mechanisms in composites reinforced with unidirectional Phormium leaf fibre. Composites Part A: Applied Science and Manufacturing, 41(3), pp.353-359. DOI: https://doi.org/10.1016/j.compositesa.2009.11.001

Sathish, S., Kumaresan, K., Prabhu, L. and Vigneshkumar, N., 2017. Experimental investigation on volume fraction of mechanical and physical properties of flax and bamboo fibers reinforced hybrid epoxy composites. Polymers and Polymer Composites, 25(3), pp.229-236. DOI: https://doi.org/10.1177/096739111702500309

Hughes, M., Carpenter, J. and Hill, C., 2007. Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. Journal of Materials Science, 42(7), pp.2499-2511. DOI: https://doi.org/10.1007/s10853-006-1027-2

Oksman, K., 2000. Mechanical properties of natural fibre mat reinforced thermoplastic. Applied Composite Materials, 7(5), pp.403-414. DOI: https://doi.org/10.1023/A:1026546426764

Rouison, D., Sain, M. and Couturier, M., 2006. Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Composites Science and Technology, 66(7-8), pp.895-906. DOI: https://doi.org/10.1016/j.compscitech.2005.07.040

Sreekumar, P.A., Joseph, K., Unnikrishnan, G. and Thomas, S., 2007. A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Composites Science and Technology, 67(3-4), pp.453-461. DOI: https://doi.org/10.1016/j.compscitech.2006.08.025

Ferland, P., Guittard, D. and Trochu, F., 1996. Concurrent methods for permeability measurement in resin transfer molding. Polymer Composites, 17(1), pp.149-158. DOI: https://doi.org/10.1002/pc.10600

Kim, S.K. and Daniel, I.M., 2003. Determination of three-dimensional permeability of fiber preforms by the inverse parameter estimation technique. Composites Part A: Applied Science and Manufacturing, 34(5), pp.421-429. DOI: https://doi.org/10.1016/S1359-835X(03)00087-3

Ikegawa, N., Hamada, H. and Maekawa, Z., 1996. Effect of compression process on void behavior in structural resin transfer molding. Polymer Engineering & Science, 36(7), pp.953-962. DOI: https://doi.org/10.1002/pen.10483

Warrior, N.A., Turner, T.A., Robitaille, F. and Rudd, C.D., 2003. Effect of resin properties and processing parameters on crash energy absorbing composite structures made by RTM. Composites Part A: Applied Science and Manufacturing, 34(6), pp.543-550. DOI: https://doi.org/10.1016/S1359-835X(03)00057-5

Francucci, G., Rodríguez, E.S. and Vázquez, A., 2012. Experimental study of the compaction response of jute fabrics in liquid composite molding processes. Journal of Composite Materials, 46(2), pp.155-167. DOI: https://doi.org/10.1177/0021998311410484

Rouison, D., Sain, M. and Couturier, M., 2004. Resin transfer molding of natural fiber reinforced composites: cure simulation. Composites Science and Technology, 64(5), pp.629-644. DOI: https://doi.org/10.1016/j.compscitech.2003.06.001

Kang, M.K., Jung, J.J. and Lee, W.I., 2000. Analysis of resin transfer moulding process with controlled multiple gates resin injection. Composites Part A: Applied Science and Manufacturing, 31(5), pp.407-422. DOI: https://doi.org/10.1016/S1359-835X(99)00086-X

Richardson, M.O.W. and Zhang, Z.Y., 2000. Experimental investigation and flow visualisation of the resin transfer mould filling process for non-woven hemp reinforced phenolic composites. Composites Part A: Applied Science and Manufacturing, 31(12), pp.1303-1310. DOI: https://doi.org/10.1016/S1359-835X(00)00008-7

Rodriguez, E., Giacomelli, F. and Vazquez, A., 2004. Permeability-porosity relationship in RTM for different fiberglass and natural reinforcements. Journal of Composite Materials, 38(3), pp.259-268. DOI: https://doi.org/10.1177/0021998304039269

Rodríguez, E., Petrucci, R., Puglia, D., Kenny, J.M. and Vazquez, A., 2005. Characterization of composites based on natural and glass fibers obtained by vacuum infusion. Journal of Composite Materials, 39(3), pp.265-282. DOI: https://doi.org/10.1177/0021998305046450

Felline, F., Pappada, S., Gennaro, R. and Passaro, A., 2013. Resin transfer moulding of composite panels with bio-based resins. SAMPE Journal, 49(3), pp.20-24.

Goutianos, S., Peijs, T., Nystrom, B. and Skrifvars, M., 2006. Development of flax fibre based textile reinforcements for composite applications. Applied Composite Materials, 13(4), pp.199-215. DOI: https://doi.org/10.1007/s10443-006-9010-2

Oksman, K., Wallström, L., Berglund, L.A. and Filho, R.D.T., 2002. Morphology and mechanical properties of unidirectional sisal–epoxy composites. Journal of Applied Polymer Science, 84(13), pp.2358-2365. DOI: https://doi.org/10.1002/app.10475

Oksman, K., 2001. High quality flax fibre composites manufactured by the resin transfer moulding process. Journal of Reinforced Plastics and Composites, 20(7), pp.621-627. DOI: https://doi.org/10.1177/073168401772678634

Davidovits, J., 2015. Geopolymer Chemistry and Applications. 4-th edition. J. Davidovits.–Saint-Quentin, France.

Noorunnisa Khanam, P., Mohan Reddy, M., Raghu, K., John, K. and Venkata Naidu, S., 2007. Tensile, flexural and compressive properties of sisal/silk hybrid composites. Journal of Reinforced Plastics and Composites, 26(10), pp.1065-1070. DOI: https://doi.org/10.1177/0731684407079347

Kornmann, X., Rees, M., Thomann, Y., Necola, A., Barbezat, M. and Thomann, R., 2005. Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites. Composites Science and Technology, 65(14), pp.2259-2268. DOI: https://doi.org/10.1016/j.compscitech.2005.02.006

Raji, M., Abdellaoui, H., Essabir, H., Kakou, C.A. and Bouhfid, R., 2019. Prediction of the cyclic durability of woven-hybrid composites. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 27-62). Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-08-102290-0.00003-9

Li, X., Tabil, L.G. and Panigrahi, S., 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment, 15(1), pp.25-33. DOI: https://doi.org/10.1007/s10924-006-0042-3

Mishra, V. and Biswas, S., 2013. Physical and mechanical properties of bi-directional jute fiber epoxy composites. Procedia Engineering, 51, pp.561-566. DOI: https://doi.org/10.1016/j.proeng.2013.01.079

Bindal, A., Singh, S., Batra, N.K. and Khanna, R., 2013. Development of glass/jute fibers reinforced polyester composite. Indian Journal of Materials Science, 2013. DOI: https://doi.org/10.1155/2013/675264

Hojo, T., Xu, Z., Yang, Y. and Hamada, H., 2014. Tensile properties of bamboo, jute and kenaf mat-reinforced composite. Energy Procedia, 56, pp.72-79. DOI: https://doi.org/10.1016/j.egypro.2014.07.133

Sukmawan, R., Takagi, H. and Nakagaito, A.N., 2016. Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Composites Part B: Engineering, 84, pp.9-16. DOI: https://doi.org/10.1016/j.compositesb.2015.08.072

Ramesh, M., Atreya, T.S.A., Aswin, U.S., Eashwar, H. and Deepa, C., 2014. Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Engineering, 97, pp.563-572. DOI: https://doi.org/10.1016/j.proeng.2014.12.284

Islam, M.S., Azmy, S. and Almamun, A., 2019. Comparative study on mechanical properties of banana and rattan fiber reinforced epoxy composites. American Journal of Engineering Research (AJER), 8(2), pp.1-6.

Obele, C. and Ishidi, E., 2015. Mechanical properties of coir fiber reinforced Epoxy resin composites for helmet shell. Industrial Engineering Letters, 5(7).

Rachchh, N.V., Ujeniya, P.A. and Misra, R.K., 2014. Mechanical characterisation of rattan fibre polyester composite. Procedia Materials Science, 6, pp.1396-1404. DOI: https://doi.org/10.1016/j.mspro.2014.07.119

Peng, X., Fan, M., Hartley, J. and Al-Zubaidy, M., 2012. Properties of natural fiber composites made by pultrusion process. Journal of Composite Materials, 46(2), pp.237-246. DOI: https://doi.org/10.1177/0021998311410474

Nguyen-Chung, T., Friedrich, K. and Mennig, G., 2007. Processability of pultrusion using natural fiber and thermoplastic matrix. Research Letters in Materials Science, 2007. DOI: https://doi.org/10.1155/2007/37123

Van de Velde, K. and Kiekens, P., 2001. Thermoplastic pultrusion of natural fibre reinforced composites. Composite structures, 54(2-3), pp.355-360. DOI: https://doi.org/10.1016/S0263-8223(01)00110-6

Akil, H.M., Cheng, L.W., Ishak, Z.M., Bakar, A.A. and Abd Rahman, M.A., 2009. Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Composites Science and Technology, 69(11-12), pp.1942-1948. DOI: https://doi.org/10.1016/j.compscitech.2009.04.014

Angelov, I., Wiedmer, S., Evstatiev, M., Friedrich, K. and Mennig, G., 2007. Pultrusion of a flax/polypropylene yarn. Composites Part A: Applied Science and Manufacturing, 38(5), pp.1431-1438. DOI: https://doi.org/10.1016/j.compositesa.2006.01.024

Bobba, S., Leman, Z., Zainudin, E.S. and Sapuan, S.M., 2020, October. Characterisation of the tensile and fracture properties of filament wound natural fibre rings. In AIP Conference Proceedings (Vol. 2284, No. 1, p. 020015). AIP Publishing LLC. DOI: https://doi.org/10.1063/5.0027248

Lehtiniemi, P., Dufva, K., Berg, T., Skrifvars, M. and Järvelä, P., 2011. Natural fiber-based reinforcements in epoxy composites processed by filament winding. Journal of Reinforced Plastics and Composites, 30(23), pp.1947-1955. DOI: https://doi.org/10.1177/0731684411431019

Goutianos, S., Peijs, T., Nystrom, B. and Skrifvars, M., 2007. Textile reinforcements based on aligned flax fibres for structural composites. Composites Innovation.

Gassan, J. and Bledzki, A.K., 1999. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Composites Science and Technology, 59(9), pp.1303-1309. DOI: https://doi.org/10.1016/S0266-3538(98)00169-9

Lee, S.M. ed., 1992. Handbook of composite reinforcements. John Wiley & Sons.

Gohil, P.P. and Shaikh, A.A., 2010. Experimental investigation and micro mechanics assessment for longitudinal elastic modulus in unidirectional cotton-polyester composites. International Journal of Engineering and Technology, 2(2), pp.111-118.

Munro, M., 1988. Review of manufacturing of fiber composite components by filament winding. Polymer Composites, 9(5), pp.352-359. DOI: https://doi.org/10.1002/pc.750090508

Salit, M.S., Jawaid, M., Yusoff, N.B. and Hoque, M.E. eds., 2015. Manufacturing of natural fibre reinforced polymer composites (pp. 1-383). New York, USA: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-07944-8

Halley, P.J., 2012. Rheology of thermosets: the use of chemorheology to characterise and model thermoset flow behaviour. In Thermosets (pp. 92-117). Woodhead Publishing. DOI: https://doi.org/10.1533/9780857097637.1.92

Madsen, B. and Lilholt, H., 2003. Physical and mechanical properties of unidirectional plant fibre composites—an evaluation of the influence of porosity. Composites Science and Technology, 63(9), pp.1265-1272. DOI: https://doi.org/10.1016/S0266-3538(03)00097-6

Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E. and Verpoest, I., 2003. Influence of processing and chemical treatment of flax fibres on their composites. Composites Science and Technology, 63(9), pp.1241-1246. DOI: https://doi.org/10.1016/S0266-3538(03)00093-9

Yang, J.P., Chen, Z.K., Yang, G., Fu, S.Y. and Ye, L., 2008. Simultaneous improvements in the cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyperbranched polymer. Polymer, 49(13-14), pp.3168-3175. DOI: https://doi.org/10.1016/j.polymer.2008.05.008

Jawaid, M.H.P.S. and Khalil, H.A., 2011. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate polymers, 86(1), pp.1-18. DOI: https://doi.org/10.1016/j.carbpol.2011.04.043

Arib, R.M.N., Sapuan, S.M., Ahmad, M.M.H.M., Paridah, M.T. and Zaman, H.K., 2006. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Materials & Design, 27(5), pp.391-396. DOI: https://doi.org/10.1016/j.matdes.2004.11.009

Downloads

Published

03-02-2021
  • Abstract view2649

How to Cite

Billah, M. M., Rabbi, M. S., & Hasan, A. (2021). A Review on Developments in Manufacturing Process and Mechanical Properties of Natural Fiber Composites. Journal of Engineering Advancements, 2(01), 13–23. https://doi.org/10.38032/jea.2021.01.003
صندلی اداری سرور مجازی ایران Decentralized Exchange

Issue

Section

Review Articles

Most read articles by the same author(s)

فروشگاه اینترنتی صندلی اداری