

Journal of Engineering Advancements Vol. 05(01) 2024, pp 19-26 https://doi.org/10.38032/jea.2024.01.004

*Corresponding Author Email Address: mdazizur@math.ku.ac.bd Published by: SciEn Publishing Group

Improvement of the Nearest Neighbor Heuristic Search Algorithm for Traveling

Salesman Problem

Md. Ziaur Rahman1, Sakibur Rahamn Sheikh2, Ariful Islam2, and Md. Azizur Rahman2,*

1Department of Mathematics, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh
2Mathematics Discipline, Khulna University, Khulna-9208, Bangladesh

Received: December 21, 2023, Revised: February 27, 2024, Accepted: March 01, 2024, Available Online: March 30, 2024

ABSTRACT

The Traveling Salesman Problem (TSP) is classified as a non-deterministic polynomial (NP) hard problem, which has found

widespread application in several scientific and technological domains. Due to its NP-hard nature, it is very hard to solve effectively

and efficiently. Despite this rationale, a multitude of optimization approaches have been proposed and developed by scientists and

researchers during the last several decades. Among these several algorithms, heuristic approaches are deemed appropriate for addressing

this intricate issue. One of the simplest and most easily implementable heuristic algorithms for TSP is the nearest neighbor algorithm

(NNA). However, its solution quality suffers owing to randomness in the optimization process. To address this issue, this study proposes

a deterministic NNA for solving symmetric TSP. It is an improved version of NNA, which starts with the shortest edge consisting of

two cities and then repeatedly includes the closest city on the route until an effective route is established. The simulation is conducted

on 20 benchmark symmetric TSP datasets obtained from TSPLIB. The simulation results provide evidence that the improved NNA

outperforms the basic NNA throughout most of the datasets in terms of solution quality as well as computational time.

Keywords: Combinatorial Optimization, Traveling Salesman Problem (TSP), Heuristic Algorithm, Nearest Neighbor Algorithm,

Improved Nearest Neighbor Algorithm

Copyright @ All authors

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.

1 Introduction

Combinatorial optimization problems are of interest to

several academic disciplines, including theoretical computer

science, artificial intelligence, operations research, and discrete

mathematics. One of the most prominent combinatorial

optimization problems is the traveling salesman problem (TSP),

which is studied in several disciplines including mathematics,

artificial intelligence, physics, operations research, and biology.

The task at hand pertains to the identification of the most efficient

route connecting a collection of cities, with the constraint that

each city be visited only once before returning to the initial city

[1]. The origins of the Traveling Salesman Problem are believed

to have been uncovered in Vienna in 1920 [2]. In 1954, Dantzig

et al. [3] provided a formal elucidation of the traveling salesman

problem. Subsequently, this methodology has been extensively

employed to simulate and analyze various practical scenarios,

encompassing domains such as hardware design, microchip

design, radio-electronic device design, data association, data

transmission in computer networks, DNA sequencing, vehicle

routing, job scheduling, clustering of data arrays, image

processing and pattern recognition, crystal structure analysis,

transportation, logistics, and supply chain management [4]-[5].

The TSP is characterized by its comprehensibility, although it

often poses challenges when attempting to find a solution due to

its inclusion of all relevant components inside a combinatorial

optimization framework. Undoubtedly, the computational time

required to solve the TSP increases exponentially as the number

of cities increases, as shown by Hore et al. [5]. Hence, the

investigation into enhancing the solution method for the TSP has

significant theoretical, technical, and practical implications.

In graph theory, the TSP can be defined symmetrically on a

full undirected graph 𝐺 = (𝑉, 𝐸) or asymmetrically on a directed

graph 𝐺 = (𝑉, 𝐴), where 𝑉 = {1,2,3, . . . 𝑛} is the set of vertices,

𝐸 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 < 𝑗} is a set of edge and 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈

𝑉, 𝑖 ≠ 𝑗}} is a set of arcs. On 𝐸 or on 𝐴 a cost matrix 𝐶 = (𝑐𝑖𝑗)

is defined. Each edge is assigned a cost, which is the distance

between cities 𝑖 and 𝑗, can be defined as [6]:

𝑐𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

Depending on the distance matrix 𝐶, the TSP can be

categorized as symmetric or asymmetric. G is symmetric TSP if

𝑐𝑖𝑗 = 𝑐𝑗𝑖 and asymmetric TSP if 𝑐𝑖𝑗 ≠ 𝑐𝑗𝑖 . In this paper we use

symmetric TSP (sTSP). The objective function 𝑍 written as [6]:

𝑍 = 𝑀𝑖𝑛 ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗∈𝑉,𝑖<𝑗

 (1)

and decision variable

 𝑥𝑖𝑗 = {
 1 ; the routes connects cities 𝑖 and 𝑗
 0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

with respect to the following constrains [6]:

∑ 𝑥𝑖𝑗 = 𝑛

𝑖,𝑗∈𝑉

 (3)

∑ 𝑥𝑖𝑘 + ∑ 𝑥𝑘𝑗 = 2

𝑘<𝑗𝑖<𝑘

 (4)

∑ 𝑥𝑖𝑗 ≤ |𝑇| − 1 (𝑇 ⊂ 𝑉, 2 ≤ |𝑇| ≤ 𝑛 − 2)

𝑖<𝑗

 (5)

https://doi.org/10.38032/jea.2024.01.004
http://creativecommons.org/licenses/by-nc/4.0/

M. Z. Rahman et al. /JEA Vol. 05(01) 2024, pp 19-26

Here, Eq. (1) represents the objective function, which aims

to minimize the overall distance, Eq. (2) denotes the decision

variable, while Eqs. (3) - (5) provide the constraints that must be

satisfied in the model. a binary variable 𝑥𝑖𝑗 is associated with

each edge (𝑖, 𝑗) in the graph 𝐺, as shown by Eq. (2). The values

1 and 0 of 𝑥𝑖𝑗 indicate whether each edge (𝑖, 𝑗) should be

included or excluded from the optimum route. As seen in the Eq.

(3) above, it is evident that every possible path, including the

optimal path, must consist of exactly n edges. According to Eq.

(4), it is necessary to choose exactly two edges for every vertex.

This constraint facilitates the establishment of itineraries in

which each city is visited just once, with the salesman ultimately

returning to the initial location. Eq. (5) serves as a constraint that

prohibits the creation of sub routes with fewer vertices than the

total number of vertices, denoted as n. This requirement ensures

that all cities are visited [6].

Due of its applicability and complexity, several scholars

have conceived and developed different optimization techniques

in the past few decades to cope with the TSP issue. Heuristic

algorithms are the most successful and frequently utilized search

approach for tackling the TSP issue among these algorithms [1].

One of the simplest and most easily implementable heuristic

algorithms for TSP is the Nearest Neighbor Algorithm (NNA).

However, its solution quality suffers from the randomness

inherent in the optimization process. In this paper, we improve

the basic NNA for symmetric TSP. Indeed, the improved version

of NNA is a deterministic approach that begins with an edge of

the two closest cities and connects them simultaneously with the

next-closest cities one by one until feasible routes are

formed. The proposed improved version shows better

performance than the basic NNA in terms of solution quality as

well as simulation time. The present paper is organized as

follows. Some engineering applications of the TSP are presented

in Section 2. In Section 3, we review some related works to solve

symmetric problem. The methods of study including both

improved and basic NNA are presented in detail in Section 4. In

Section 5, the results are given and discussed, and Section 6

concludes the study with a future plan.

2 Some Engineering Applications of TSP

The traveling salesman problem (TSP) is an extensively

studied problem in computer science and optimization theory,

but it also has numerous real-life applications in diverse

engineering fields. Here are some engineering applications of

TSP:

Circuit Board Manufacturing: In electronics

manufacturing, the TSP can be used to optimize component

placement on circuit boards. By finding the shortest path that

visits all the required connection points (components), engineers

can minimize the length of interconnect lengths, reduce signal

delays, and optimize the layout for space and efficiency.

Robotics: TSP algorithms are used in robotics for motion

planning, task allocation, and multi-robot coordination. These

algorithms help discover a shortest path for a robot to traverse

multiple points in a given environment while satisfying

constraints such as avoiding obstacles and obeying motion limits

(e.g., maximum speed, acceleration). This is crucial for tasks

such as robotic exploration, surveillance, and delivery in known

or unknown terrain environments.

DNA Sequencing: In bioinformatics, the TSP has been

adopted to solve DNA sequencing problems, where the goal is to

determine the most efficient order in which to sequence

fragments of DNA to reconstruct the original sequence. By

leveraging TSP algorithms, researchers can enhance the

efficiency, accuracy, and scalability of DNA sequencing

workflows and data analysis pipelines.

Wireless Sensor Networks (WSNs): TSP algorithms

provide powerful optimization tools to address various

challenges in WSNs, including data collection, energy

efficiency, coverage optimization, fault detection, and dynamic

network management. With the TSP algorithms, researchers and

engineers can design more efficient and robust WSNs for a wide

range of applications, including environmental monitoring,

smart infrastructure, and IoT systems.

Vehicle Routing and Logistics: One of the most common

applications of TSP is optimizing routes for delivery vehicles,

such as trucks, drones, or even autonomous vehicles. By finding

the shortest route that visits a set of locations (cities or delivery

points), companies can minimize fuel consumption, reduce travel

time, and improve overall efficiency in logistics operations while

meeting various operational constraints.

Urban Planning: In urban planning, TSP algorithms can

assist in optimizing routes for garbage collection trucks, street

cleaning vehicles, and other municipal services, leading to more

efficient use of resources and reduced traffic congestion.

VLSI Chip Design: In VLSI (Very Large Scale Integration)

chip design, TSP algorithms are utilized for tasks such as wire

routing and layout optimization. By finding the shortest paths to

connect different components on the chip, engineers can reduce

cable length, reduce signal delay, and optimize chip area and

power consumption.

These are just a few examples, and the applications of the

TSP in engineering are diverse and continually evolving as new

challenges arise in various fields.

3 Related Works

Nearest Neighbor Algorithm (NNA) is one of the simplest

heuristic route construction algorithms. For a long time,

researchers have been working on this route construction

algorithm for solving TSP. In this section, we review some works

that researchers have done recently on the route construction

algorithm for TSP.

Hore et al. [5] offered a greedy algorithm-based solution to

the traveling salesman issue. The greedy algorithm is like the

Nearest Neighbor Algorithm (NNA), and the route starts from

that particular sub-route with two cities, which has the shortest

distance among all such feasible sub-routes. Although such an

algorithm usually does not give the global optimum solution, it

has been considered the initial solution. These algorithms are

compared to their proposed algorithm. The suggested approach

outperformed the conventional approaches and was determined

to be more effective than the VNS-1 and VNS-2 algorithms on

average. In their paper, Naser et al. [7] introduced a deterministic

methodology that used a multi-perfect matching and partitioning

technique to approximate the solution of the symmetric traveling

salesman problem (STSP). The first step was identifying the

most cost-effective combination of sub-routes that encompassed

all cities and had a minimum of four edges for each sub-route.

The performance of the proposed method is assessed and

contrasted with the optimum values achieved by other

established strategies for solving the Symmetric Traveling

Salesman Problem (STSP). The simulation results presented in

this paper indicate that the methodology used by the researchers

yields solutions that are either optimum or very close to optimal

within a polynomial time frame.

20

M. Z. Rahman et al. /JEA Vol. 05(01) 2024, pp 19-26

Halim and Ismail [8] conducted a comparative analysis of

heuristic strategies in the Traveling Salesman Problem (TSP).

The study focused on six heuristic approaches, namely Nearest

Neighbor, Genetic Algorithm, Simulated Annealing, Tabu

Search, Ant Colony Optimization, and Tree Physiology

Optimization. The comparison of computation, accuracy, and

convergence has been conducted in this research. Bentley [9]

employed a double-sided NN method, which allows the route to

improve on both ends. This method uses nearest neighbour (NN)

search on both ends of the route to find the path with the shortest

length. On the other hand, Klug et al. [10] have recently

expanded the NN technique to k-RNN for solving STSP and

ATSP. The simulation results indicated that the solution quality

of the 2-RNN algorithm remains rather consistent, ranging from

around 10% to 40% higher than the optimal solution.

Bakar and Ibrahim [11] used a heuristic shortest route

methodology in order to determine the optimal solution for the

TSP. This study proposes a modified strategy that combines the

heuristic shortest distance method and fuzzy approach for

addressing a network with an erroneous arc length. The

investigation focused on the determination of the network's arc

length, as well as the analysis of the interval number and

triangular fuzzy number. Subsequently, the revised methodology

was used to address a particular instance of the Traveling

Salesman Problem (TSP). The overall shortest distance obtained

using this strategy was then compared to the total distance

generated by employing a conventional nearest neighbor

heuristic technique. The findings indicate that the modified

methodology yields a sequence of visited cities that is equivalent

to the conventional technique. Additionally, it provides a reliable

measure of the total shortest distance, which is less than the total

shortest distance calculated by the old approach. Consequently,

the findings of this study have the potential to enhance the

existing methodologies used in addressing the TSP.

The heuristic approach proposed by Lin et al. [12] for the

TSP is highly commendable. The authors introduced a heuristic

approach that demonstrated significant success in generating

optimal and near-optimal solutions for the STSP. The

methodology was formulated employing a comprehensive

heuristic approach that possesses the potential to address diverse

combinatorial optimization problems. The proposed

methodology successfully produced optimal solutions for all the

examined problems, encompassing both "traditional" problems

documented in existing literature and randomly generated

problems. The scope of the problems ranged up to a maximum

of 110 cities. In terms of absolute values, it was observed that a

typical issue involving 100 cities required less than 25 seconds

for a single example (GE635) and approximately three minutes

to reach the optimal solution with a confidence level exceeding

95%. In addition, some papers are reviewed on the Nearest

Neighbor Algorithm (NNA) for TSP are mentioned in [13]-[17].

4 Methods of Study

4.1 Basic Nearest Neighbor Algorithm

The most elementary algorithm employed in the Traveling

Salesman Problem (TSP) is the Nearest Neighbor Algorithm

(NNA). The aforementioned approach efficiently produces a

concise route, albeit infrequently yielding the optimal solution

[18]. The basic NNA is used to determine a traveling salesman's

itinerary. The salesperson begins in one city (at random), then

travels to the city closest to the beginning city. After that, he

travels to the nearest unexplored city and continues the procedure

until all of the cities have been visited, at which point he returns

to the beginning city. The basic NNA algorithm is as follows:

1. Make all vertices unvisited by default

2. Select a random vertex and make it the current vertex 𝒖.

Make a note that 𝒖 has been visited

3. Find the shortest path between current vertex 𝒖 and a

previously visited vertex 𝒗

4. Set the current vertex 𝒖 to 𝒗. Make a note that 𝒗 has been

visited

5. Terminate when all of the domain's vertices have been

visited. Otherwise, proceed to step 3

6. Return to your starting city

However, its solution quality suffers owing to randomness.

Due to the problem, we have proposed a revised version of the

basic NNA. The basic NNA is mostly probabilistic because it

cannot always provide the shortest route. But the improved

algorithm is deterministic. The improved NNA is a route-

construction algorithm. First, it chooses a random city from a list

of cities in NNA. Then, using the shortest distance, travel to the

nearest unexplored city. This process will be repeated until all

cities have been visited and the player is forced to return to the

starting point.

4.2 Improved Nearest Neighbor Algorithm

It began its route on the improved NNA with a short

distance. Firstly, it sorts all edges, and then it takes a short edge

with two vertices (or cities). This is the main difference between

improved NNA and basic NNA. The next steps of the improved

NNA are like those of the basic NNA. The mathematical analysis

and algorithm of an improved NNA are discussed in the

following subsection.
Let 𝑛 be the number of cities and TSP can be defined

symmetrically on a full undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 =
{𝐴1, 𝐴2, 𝐴3, . . . , 𝐴𝑛} is the set of vertices, 𝐸 = {(𝐴𝑖, 𝐴𝑗): 𝐴𝑖, 𝐴𝑗 ∈

𝑉, 𝑖 > 𝑗} is a set of edge. Then, calculate the distance of every

possible edge and select the shortest edge contains two closest

cites 𝐴𝑖 and 𝐴𝑗 which is our initial edge and expressed as 𝐴𝑖 ↔

𝐴𝑗.

The set of routes is,

𝑋1 = 𝑚𝑖𝑛{𝐴𝑖𝐴𝑗: 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑛 − 1 and

 𝐴𝑖𝐴𝑗 ∈ 𝐸}

Now, choose the nearest city 𝐴𝑘 from the initial edge and

connect the city which is expressed as

𝐴𝑖 ↔ 𝐴𝑗 ↔ 𝐴𝑘

and the set of the route is,

𝑋2 = 𝑚𝑖𝑛{𝑋1𝐴𝑘: 𝑘 = 1,2, … , 𝑛 − 2 and 𝐴𝑘 ∈ 𝑉 − 𝑋1}

then, choose the nearest city 𝐴𝑙 from the last visited city 𝐴𝑘

and add with the current route which expressed as

𝐴𝑖 ↔ 𝐴𝑗 ↔ 𝐴𝑘 ↔ 𝐴𝑙 .

The set of the route is,

𝑋3 = 𝑚𝑖𝑛{𝑋2𝐴𝑙: 𝑙 = 1,2, … , 𝑛 − 3 and 𝐴𝑙 ∈ 𝑉 − 𝑋2}.

Similarly taking every city, return to the initial edge where

a city isn’t connected (suppose 𝐴𝑖) and the route expressed as

𝐴𝑖 ↔ 𝐴𝑗 ↔ 𝐴𝑘 ↔ 𝐴𝑙 ↔ . . . ↔ 𝐴𝑧 ↔ 𝐴𝑖 and

the set of the route is,

21

M. Z. Rahman et al. /JEA Vol. 05(01) 2024, pp 19-26

𝑋𝑛−1 = 𝑚𝑖𝑛{𝑋𝑛−2𝐴𝑧: 𝑧 = 1,2, … , 𝑛 − (𝑛 − 1) and 𝐴𝑧

∈ 𝑉 − 𝑋𝑛−2}

In addition, for more visualization, a flowchart of the

improved NNA is shown in Fig. 1.

Fig. 1 Flowchart of the proposed improved nearest neighbor search algorithm for TSP

The improved nearest neighbor search algorithm can be

explained by the following step by step procedure:

Step:1. Sort all edges from n cities.

Step:2. Select an edge with a shortage distance.

Step:3. From the remaining cities, find the nearest unvisited

city and combine it with the existing edge.

Step:4. Make a note of the most recent city visited.

Step:5. Find the closest city to the most recent city visited.

Step:6. Add the closest city to the tour and mark as visited.

Step:7. Is there any city that has not yet been visited? If you

responded yes, go to step 5.

Step:8. Return to the first chosen edge's starting vertex

5 Results and Discussion

In this particular section, a series of simulations were

conducted on various datasets to assess and compare the

performance of of the improved NNA to that of the basic NNA.

In order to fulfil the simulation objectives, a collection of real-

world symmetric Travelling Salesman Problem (TSP) datasets

from TSPLIB is taken into consideration. Consider 20

benchmark symmetric TSP datasets with dimensions ranging

from 52 to 2103. The dataset name is assigned a number value

that corresponds to its dimension. As an example, the

alphanumeric identifier "berlin52" represents the numerical

value assigned to a specific node consisting of 52 geographical

places inside the city of Berlin. Once the datasets have been

gathered, it is necessary to compute a symmetric distance matrix

in which the diagonal members are set to zero. The distance

matrix provides a measure of the distance between the nodes.

The evaluation of basic NNA included the computation of the

best, worst, and average outcomes, as well as the measurement

of the time taken to run the procedure across all datasets. In the

improved NNA, each individual test case inside the simulation is

executed autonomously, taking into consideration the size of the

dataset. In contrast, it should be noted that in the simulation,

every test case is executed autonomously, resulting in a twofold

increase in the dataset lengths for the basic NNA. Both the basic

NNA and improved NNA are implemented using MATLAB

R2021a. The simulations are conducted on a computer system

equipped with a CORE i5 processor operating at a frequency of

1.80 GHz and 4 GB of RAM.

The simulation findings and subsequent analysis including

20 benchmark datasets have been subjected to testing, comparing

the performance of both the basic NNA and improved NNA.

Table 1 illustrates the performance comparison between the

basic NNA and improved NNA for 20 benchmark datasets. The

first column in the table provides a description of the dataset

names. The second column provides information pertaining to

the quantity of cities. The third column describes the best-known

optimal solution. After that, the fourth column describes the

optimal solution, execution time of the CPU (in seconds), and

22

M. Z. Rahman et al. /JEA Vol. 05(01) 2024, pp 19-26

error (%) for an improved NNA. The best, average, and worst

results, the execution time of the CPU (in seconds), and the error

rate (%) for the average and best of each dataset for basic NNA

are described in the last column. Here, datasets are also arranged

in an ascending order of nodes.

The formula for finding error of improved NNA is

Error (%) =
result of improved NNA − optimum

optimum

and formula we use for finding error of best and average

solution of basic NNA are

Errorbest (%) =
best result of NNA − optimum

optimum

Erroravg (%) =
averge result of NNA − optimum

optimum

Table 1 Performance comparison between basic NNA and improved NNA

Datasets Nodes Optimum

Solution

Improved NNA Basic NNA

Best Time(s) Error (%) Best Average Worst Time(s) Errorbest (%) Erroravg (%)

berlin52 52 7542 9161 0.01368 21.4664 8149 9396 10188 0.03394 8.04823 24.583

rat99 99 1211 1577 0.01020 30.2229 1507 1695 1911 0.07070 24.4426 39.969

kroC100 100 20749 25519 0.00994 22.9890 26043 27925 30014 0.06900 25.5145 34.587

lin105 105 14379 17363 0.01073 20.7524 19759 21221 23448 0.12903 37.4157 47.582

pr107 107 44303 47233 0.01757 6.61354 46563 53181 60539 0.08233 5.10124 20.032

pr124 124 59030 69066 0.01107 17.0015 67302 75851 84709 0.10606 14.0131 28.496

ch130 130 6110 7341 0.01750 20.1472 7461 7988 8894 0.08022 22.1119 30.734

pr152 152 73682 85243 0.01570 15.6903 86665 94459 107039 0.08970 17.6201 28.192

u159 159 42080 55200 0.02709 31.1787 54509 60038 63711 0.19008 29.5369 42.678

rat195 195 2323 2624 0.03069 12.9573 2751 3023 3277 0.13011 18.4245 30.134

d198 198 15780 18485 0.01764 17.1419 18233 22085 24076 0.17593 15.5449 39.956

kroA200 200 29368 36824 0.01874 25.3881 35161 38291 42451 0.12714 19.7255 30.384

ts225 225 126645 149243 0.07770 17.8435 146769 160600 177560 0.31578 15.8908 26.811

pr264 264 49135 57663 0.02865 17.3562 56947 60446 65021 0.20568 15.8995 23.022

lin318 318 42029 52883 0.04197 25.8250 53621 56250 60102 0.33150 27.5805 33.831

fl417 417 11861 14773 0.05673 24.5510 14603 16323 17539 0.63161 23.1178 37.610

rat575 575 6773 8100 0.10071 19.5924 8345 8774 9245 1.69813 23.2090 29.547

p654 654 34643 43492 0.11859 25.5433 43457 49486 54001 2.27642 25.4426 42.845

fl1400 1400 20127 26461 0.87500 31.4701 26854 28935 31599 30.2443 33.4226 43.761

d2103 2103 80529 88547 5.34190 9.95666 86554 93753 99944 249.528 7.48176 16.424

In Table 1, we show the error (%) comparison between the

improved NNA and the basic NNA with the best-known

solution. The error (%) of the best result in improved NNA is

lower than the average in all 20 cities listed above, and the worst

result is in basic NNA. For example, the dataset "rat99"

represents the 99 nodes of this city. By using the improved NNA,

the optimal is 1577, and the average result of that dataset is 1695

for the basic NNA. The error in improved NNA is 30.2229%,

whereas the error in basic NNA is 24.4426% and 39.969% for

the best and average results, respectively. Again, for "lin318,"

using our improved NNA, the optimal solution is 52883. Using

the basic NNA, the average result is 56328. The error in

improved NNA is 20.7524%, whereas the error in basic NNA is

37.4256% and 47.582% for the best and average results,

respectively. Even for the higher number of cities, the same

characteristics hold. For example, the dataset "d2103" denotes

the number of nodes as 2103. This is a huge number of nodes.

By using an improved NNA, the optimal solution for that dataset

is 88547. Using the basic NNA, the average result is 93753. The

error in improved NNA is 9.95666%, whereas the error in basic

NNA is 7.48176% and 16.424% for the best and average results,

respectively.

Similarly, for all other datasets. The fourth and fifth columns

of Table 1 show a comparison of the computational time between

improved NNA and basic NNA for any random dataset. The

required time for execution of the improved NNA is less than the

basic NNA. For example, using improved NNA, the time of

execution of "kroC100" is 0.009948 s, and for basic NNA, it is

0.069040s. Also, by using improved NNA, the time of execution

of the dataset "ch130" is 0.017507s, and for basic NNA, it is

0.080252s. Even for the higher number of cities, the same

characteristics hold. For dataset ‘fl1400’, the execution time is

0.875745s for improved NNA and 30.244633s for basic NNA.

Improved NNA, on the other hand, outperforms basic NNA in

terms of computational time. According to the simulation results,

improved NNA outperforms both the average and the worst

results of basic NNA in terms of values and computational time.

Even with respect to the best-known solution of datasets, the

error (%) of some cities in improved NNA is less than the error

(%) of the best result in basic NNA. In improved NNA, the

optimal solution of 8 datasets provides a better result than the

best result of basic NNA. For the dataset "kroC100," the optimal

solution is 25519, whereas the best solution for the basic NNA is

26043. For this dataset, the error in the improved NNA is

22.9890%, whereas the error in the basic NNA is 25.5145% for

the best result with respect to the best-known solutions to the

dataset. Again for "rat195", the optimal solution for improved

NNA is 8100, where the best solution for basic NNA is 8345. For

23

M. Z. Rahman et al. /JEA Vol. 05(01) 2024, pp 19-26

this dataset, the error in the improved NNA is 12.9573%,

whereas the error in the basic NNA is 18.4245%. Likewise for

the other datasets. Therefore, the improved NNA provides better

results than the basic NNA, both in the aspect of values and of

computational time and reduces error. In Fig. 2 the bar chart

shows the error (%) comparison between the improved NNA and

the basic NNA with respect to the best-known solutions of 20

symmetric datasets. The colors blue, orange, and yellow

represent the best solution error for improved NNA, the best

solution error for basic NNA, and the best solution error for basic

NNA, respectively.

The bar chart (Fig. 3) shows the error (%) comparison

between improved NNA and basic NNA for the 8 best symmetric

datasets, which is best against basic NNA. For further

visualization, Fig. 4 graphically represents the difference

between the improved NNA and the basic NNA of the Best 8

dataset. There are two figures for each dataset in Fig. 4: one for

improved NNA and another for basic NNA. The route to an

optimal solution is shown in the two figures. Comparing table,

graph, and bar charts, it is demonstrated that the improved NNA

outperforms the basic NNA in terms of solution quality as well

as computational time.

Fig. 2 Error (%) comparison bar charts for the best solution of improved NNA and the average and best solution of basic NNA

with respect to the best-known solution for 20 benchmark STSP datasets.

Fig. 3 Error comparison bar charts of improved NNA and basic NNA for best 8 benchmark STSP datasets.

24

M. Z. Rahman et al. /JEA Vol. 05(01) 2024, pp 19-26

Fig. 4 Obtained optimum route for 8 datasets both of improved NNA and basic NNA

6 Conclusions

The present study improved the basic NNA for solving

symmetric TSP. It compared improved NNA with basic NNA

because both algorithms are route construction algorithms.

However, the main difference between them is that the improved

NNA is deterministic, i.e., the results produced by this algorithm

are same at every single run. On the other hand, the basic NNA

is probabilistic, i.e., this algorithm generates different results at

every single run. All datasets have been subjected to

comprehensive testing. The simulation findings and subsequent

analysis demonstrate that the improved NNA yields superior

outcomes compared to the basic NNA. It has been discovered

that when the initial solution is selected randomly, the improved

NNA outperforms and exhibits more efficiency compared to the

basic NNA. Based on the aforementioned datasets, simulation

design, and environmental conditions, it can be inferred that

improved NNA yields superior outcomes with reduced time

consumption. In subsequent analyses, the improved NNA will be

juxtaposed with other route construction algorithms.

Furthermore, it is possible to develop a hybrid method by

integrating the improved NNA with other route construction

algorithms. As a result, it will achieving superior outcomes

compared to an improved NNA.

References

[1] Rahman, M.A. and Parvez, H., 2021. Repetitive nearest

neighbor based simulated annealing search optimization

algorithm for traveling salesman problem. Open Access

Library Journal, 8(6), pp.1-17.

[2] Applegate, D., Bixby, R., Cook, W. and Chvátal, V.,

1998. On the solution of traveling salesman problems.

[3] Dantzig, G., Fulkerson, R. and Johnson, S., 1954.

Solution of a large-scale traveling-salesman problem.

Journal of the Operations Research Society of America,

2(4), pp.393-410.

[4] Deng, W., Chen, R., He, B., Liu, Y., Yin, L. and Guo, J.,

2012. A novel two-stage hybrid swarm intelligence

optimization algorithm and application. Soft Computing,

16, pp.1707-1722.

[5] Hore, S., Chatterjee, A. and Dewanji, A., 2018. Improving

variable neighborhood search to solve the traveling

salesman problem. Applied Soft Computing, 68, pp.83-91.

[6] Matai, R., Singh, S.P. and Mittal, M.L., 2010. Traveling

salesman problem: an overview of applications,

formulations, and solution approaches. Traveling

Salesman Problem, Theory and Applications, 1(1), pp.1-

25.

[7] Naser, H., Awad, W.S. and El-Alfy, E.S.M., 2019. A

multi-matching approximation algorithm for Symmetric

Traveling Salesman Problem. Journal of Intelligent &

Fuzzy Systems, 36(3), pp.2285-2295.

[8] Halim, A.H. and Ismail, I., 2019. Combinatorial

optimization: comparison of heuristic algorithms in

25

M. Z. Rahman et al. /JEA Vol. 05(01) 2024, pp 19-26

travelling salesman problem. Archives of Computational

Methods in Engineering, 26, pp.367-380.

[9] Bentley, J.J., 1992. Fast algorithms for geometric

traveling salesman problems. ORSA Journal on

Computing, 4(4), pp.387-411.

[10] Klug, N., Chauhan, A., V, V. and Ragala, R., 2019. k-

RNN: Extending NN-heuristics for the TSP. Mobile

Networks and Applications, 24, pp.1210-1213.

[11] Bakar, S.A. and Ibrahim, M., 2017, August. Optimal

solution for travelling salesman problem using heuristic

shortest path algorithm with imprecise arc length. In AIP

Conference Proceedings, 1870(1). AIP Publishing.

[12] Lin, S. and Kernighan, B.W., 1973. An effective heuristic

algorithm for the traveling-salesman problem. Operations

Research, 21(2), pp.498-516.

[13] Chen, Y. and Zhang, P., 2006. Optimized annealing of

traveling salesman problem from the nth-nearest-

neighbor distribution. Physica A: Statistical Mechanics

and Its Applications, 371(2), pp.627-632.

[14] Raya, L., Saud, S.N., Shariff, S.H. and Bakar, K.N.A.,

2020. Exploring the performance of the improved nearest-

neighbor algorithms for solving the euclidean travelling

salesman problem. Advances in Natural and Applied

Sciences, 14(2), pp.10-19.

[15] Rosenkrantz, D.J., Stearns, R.E. and Lewis, II, P.M.,

1977. An analysis of several heuristics for the traveling

salesman problem. SIAM Journal on Computing, 6(3),

pp.563-581.

[16] Sahin, M., 2023. Solving TSP by using combinatorial

Bees algorithm with nearest neighbor method. Neural

Computing and Applications, 35(2), pp.1863-1879.

[17] Pop, P.C., Cosma, O., Sabo, C. and Sitar, C.P., 2023. A

comprehensive survey on the generalized traveling

salesman problem. European Journal of Operational

Research, 314(3), pp.819-835.

[18] Gutin, G., Yeo, A. and Zverovitch, A., 2002. Exponential

neighborhoods and domination analysis for the TSP. In

The Traveling Salesman Problem and Its Variations (pp.

223-256). Boston, MA: Springer US.

26

	1 Introduction
	2 Some Engineering Applications of TSP
	3 Related Works
	4 Methods of Study
	4.1 Basic Nearest Neighbor Algorithm
	4.2 Improved Nearest Neighbor Algorithm

	5 Results and Discussion
	6 Conclusions
	References

