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ABSTRACT   

The Traveling Salesman Problem (TSP) is classified as a non-deterministic polynomial (NP) hard problem, which has found 

widespread application in several scientific and technological domains. Due to its NP-hard nature, it is very hard to solve effectively 

and efficiently. Despite this rationale, a multitude of optimization approaches have been proposed and developed by scientists and 

researchers during the last several decades. Among these several algorithms, heuristic approaches are deemed appropriate for addressing 

this intricate issue. One of the simplest and most easily implementable heuristic algorithms for TSP is the nearest neighbor algorithm 

(NNA). However, its solution quality suffers owing to randomness in the optimization process. To address this issue, this study proposes 

a deterministic NNA for solving symmetric TSP. It is an improved version of NNA, which starts with the shortest edge consisting of 

two cities and then repeatedly includes the closest city on the route until an effective route is established. The simulation is conducted 

on 20 benchmark symmetric TSP datasets obtained from TSPLIB. The simulation results provide evidence that the improved NNA 

outperforms the basic NNA throughout most of the datasets in terms of solution quality as well as computational time. 
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1 Introduction   

Combinatorial optimization problems are of interest to 

several academic disciplines, including theoretical computer 

science, artificial intelligence, operations research, and discrete 

mathematics. One of the most prominent combinatorial 

optimization problems is the traveling salesman problem (TSP), 

which is studied in several disciplines including mathematics, 

artificial intelligence, physics, operations research, and biology. 

The task at hand pertains to the identification of the most efficient 

route connecting a collection of cities, with the constraint that 

each city be visited only once before returning to the initial city 

[1]. The origins of the Traveling Salesman Problem are believed 

to have been uncovered in Vienna in 1920 [2]. In 1954, Dantzig 

et al. [3] provided a formal elucidation of the traveling salesman 

problem. Subsequently, this methodology has been extensively 

employed to simulate and analyze various practical scenarios, 

encompassing domains such as hardware design, microchip 

design, radio-electronic device design, data association, data 

transmission in computer networks, DNA sequencing, vehicle 

routing, job scheduling, clustering of data arrays, image 

processing and pattern recognition, crystal structure analysis, 

transportation, logistics, and supply chain management [4]-[5]. 

The TSP is characterized by its comprehensibility, although it 

often poses challenges when attempting to find a solution due to 

its inclusion of all relevant components inside a combinatorial 

optimization framework. Undoubtedly, the computational time 

required to solve the TSP increases exponentially as the number 

of cities increases, as shown by Hore et al. [5]. Hence, the 

investigation into enhancing the solution method for the TSP has 

significant theoretical, technical, and practical implications. 

In graph theory, the TSP can be defined symmetrically on a 

full undirected graph 𝐺 = (𝑉, 𝐸) or asymmetrically on a directed 

graph 𝐺 = (𝑉, 𝐴), where 𝑉 = {1,2,3, . . . 𝑛} is the set of vertices, 

𝐸 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 < 𝑗} is a set of edge and 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈

𝑉, 𝑖 ≠ 𝑗}} is a set of arcs. On 𝐸 or on 𝐴 a cost matrix 𝐶 = (𝑐𝑖𝑗) 

is defined. Each edge is assigned a cost, which is the distance 

between cities 𝑖 and 𝑗, can be defined as [6]: 

𝑐𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2
 

Depending on the distance matrix 𝐶, the TSP can be 

categorized as symmetric or asymmetric. G is symmetric TSP if  

𝑐𝑖𝑗 = 𝑐𝑗𝑖  and asymmetric TSP if 𝑐𝑖𝑗 ≠ 𝑐𝑗𝑖 . In this paper we use 

symmetric TSP (sTSP). The objective function 𝑍 written as [6]: 

𝑍 = 𝑀𝑖𝑛 ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗∈𝑉,𝑖<𝑗

 (1) 

and decision variable  

        𝑥𝑖𝑗  = {  
 1  ;  the routes connects cities 𝑖 and  𝑗  
 0  ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                              

 (2) 

with respect to the following constrains [6]: 

∑ 𝑥𝑖𝑗 = 𝑛

𝑖,𝑗∈𝑉

 (3) 

∑ 𝑥𝑖𝑘 + ∑ 𝑥𝑘𝑗 = 2

𝑘<𝑗𝑖<𝑘

 (4) 

∑ 𝑥𝑖𝑗 ≤ |𝑇| − 1 (𝑇 ⊂ 𝑉, 2 ≤ |𝑇| ≤ 𝑛 − 2) 

𝑖<𝑗

 (5) 
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Here, Eq. (1) represents the objective function, which aims 

to minimize the overall distance, Eq. (2) denotes the decision 

variable, while Eqs. (3) - (5) provide the constraints that must be 

satisfied in the model. a binary variable 𝑥𝑖𝑗  is associated with 

each edge (𝑖, 𝑗) in the graph 𝐺, as shown by Eq. (2). The values 

1 and 0 of 𝑥𝑖𝑗  indicate whether each edge (𝑖, 𝑗) should be 

included or excluded from the optimum route. As seen in the Eq. 

(3) above, it is evident that every possible path, including the 

optimal path, must consist of exactly n edges. According to Eq. 

(4), it is necessary to choose exactly two edges for every vertex. 

This constraint facilitates the establishment of itineraries in 

which each city is visited just once, with the salesman ultimately 

returning to the initial location. Eq. (5) serves as a constraint that 

prohibits the creation of sub routes with fewer vertices than the 

total number of vertices, denoted as n. This requirement ensures 

that all cities are visited [6]. 

Due of its applicability and complexity, several scholars 

have conceived and developed different optimization techniques 

in the past few decades to cope with the TSP issue. Heuristic 

algorithms are the most successful and frequently utilized search 

approach for tackling the TSP issue among these algorithms [1]. 

One of the simplest and most easily implementable heuristic 

algorithms for TSP is the Nearest Neighbor Algorithm (NNA). 

However, its solution quality suffers from the randomness 

inherent in the optimization process. In this paper, we improve 

the basic NNA for symmetric TSP. Indeed, the improved version 

of NNA is a deterministic approach that begins with an edge of 

the two closest cities and connects them simultaneously with the 

next-closest cities one by one until feasible routes are 

formed. The proposed improved version shows better 

performance than the basic NNA in terms of solution quality as 

well as simulation time. The present paper is organized as 

follows. Some engineering applications of the TSP are presented 

in Section 2. In Section 3, we review some related works to solve 

symmetric problem. The methods of study including both 

improved and basic NNA are presented in detail in Section 4. In 

Section 5, the results are given and discussed, and Section 6 

concludes the study with a future plan. 

2 Some Engineering Applications of TSP 

The traveling salesman problem (TSP) is an extensively 

studied problem in computer science and optimization theory, 

but it also has numerous real-life applications in diverse 

engineering fields. Here are some engineering applications of 

TSP: 

Circuit Board Manufacturing: In electronics 

manufacturing, the TSP can be used to optimize component 

placement on circuit boards. By finding the shortest path that 

visits all the required connection points (components), engineers 

can minimize the length of interconnect lengths, reduce signal 

delays, and optimize the layout for space and efficiency. 

Robotics: TSP algorithms are used in robotics for motion 

planning, task allocation, and multi-robot coordination. These 

algorithms help discover a shortest path for a robot to traverse 

multiple points in a given environment while satisfying 

constraints such as avoiding obstacles and obeying motion limits 

(e.g., maximum speed, acceleration). This is crucial for tasks 

such as robotic exploration, surveillance, and delivery in known 

or unknown terrain environments. 

DNA Sequencing: In bioinformatics, the TSP has been 

adopted to solve DNA sequencing problems, where the goal is to 

determine the most efficient order in which to sequence 

fragments of DNA to reconstruct the original sequence. By 

leveraging TSP algorithms, researchers can enhance the 

efficiency, accuracy, and scalability of DNA sequencing 

workflows and data analysis pipelines. 

Wireless Sensor Networks (WSNs): TSP algorithms 

provide powerful optimization tools to address various 

challenges in WSNs, including data collection, energy 

efficiency, coverage optimization, fault detection, and dynamic 

network management. With the TSP algorithms, researchers and 

engineers can design more efficient and robust WSNs for a wide 

range of applications, including environmental monitoring, 

smart infrastructure, and IoT systems. 

Vehicle Routing and Logistics: One of the most common 

applications of TSP is optimizing routes for delivery vehicles, 

such as trucks, drones, or even autonomous vehicles. By finding 

the shortest route that visits a set of locations (cities or delivery 

points), companies can minimize fuel consumption, reduce travel 

time, and improve overall efficiency in logistics operations while 

meeting various operational constraints. 

Urban Planning: In urban planning, TSP algorithms can 

assist in optimizing routes for garbage collection trucks, street 

cleaning vehicles, and other municipal services, leading to more 

efficient use of resources and reduced traffic congestion. 

VLSI Chip Design: In VLSI (Very Large Scale Integration) 

chip design, TSP algorithms are utilized for tasks such as wire 

routing and layout optimization. By finding the shortest paths to 

connect different components on the chip, engineers can reduce 

cable length, reduce signal delay, and optimize chip area and 

power consumption. 

These are just a few examples, and the applications of the 

TSP in engineering are diverse and continually evolving as new 

challenges arise in various fields. 

3 Related Works 

Nearest Neighbor Algorithm (NNA) is one of the simplest 

heuristic route construction algorithms. For a long time, 

researchers have been working on this route construction 

algorithm for solving TSP. In this section, we review some works 

that researchers have done recently on the route construction 

algorithm for TSP.  

Hore et al. [5] offered a greedy algorithm-based solution to 

the traveling salesman issue. The greedy algorithm is like the 

Nearest Neighbor Algorithm (NNA), and the route starts from 

that particular sub-route with two cities, which has the shortest 

distance among all such feasible sub-routes. Although such an 

algorithm usually does not give the global optimum solution, it 

has been considered the initial solution. These algorithms are 

compared to their proposed algorithm. The suggested approach 

outperformed the conventional approaches and was determined 

to be more effective than the VNS-1 and VNS-2 algorithms on 

average. In their paper, Naser et al. [7] introduced a deterministic 

methodology that used a multi-perfect matching and partitioning 

technique to approximate the solution of the symmetric traveling 

salesman problem (STSP). The first step was identifying the 

most cost-effective combination of sub-routes that encompassed 

all cities and had a minimum of four edges for each sub-route. 

The performance of the proposed method is assessed and 

contrasted with the optimum values achieved by other 

established strategies for solving the Symmetric Traveling 

Salesman Problem (STSP). The simulation results presented in 

this paper indicate that the methodology used by the researchers 

yields solutions that are either optimum or very close to optimal 

within a polynomial time frame.  
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Halim and Ismail [8] conducted a comparative analysis of 

heuristic strategies in the Traveling Salesman Problem (TSP). 

The study focused on six heuristic approaches, namely Nearest 

Neighbor, Genetic Algorithm, Simulated Annealing, Tabu 

Search, Ant Colony Optimization, and Tree Physiology 

Optimization. The comparison of computation, accuracy, and 

convergence has been conducted in this research. Bentley [9] 

employed a double-sided NN method, which allows the route to 

improve on both ends. This method uses nearest neighbour (NN) 

search on both ends of the route to find the path with the shortest 

length. On the other hand, Klug et al. [10] have recently 

expanded the NN technique to k-RNN for solving STSP and 

ATSP. The simulation results indicated that the solution quality 

of the 2-RNN algorithm remains rather consistent, ranging from 

around 10% to 40% higher than the optimal solution.  

Bakar and Ibrahim [11] used a heuristic shortest route 

methodology in order to determine the optimal solution for the 

TSP. This study proposes a modified strategy that combines the 

heuristic shortest distance method and fuzzy approach for 

addressing a network with an erroneous arc length. The 

investigation focused on the determination of the network's arc 

length, as well as the analysis of the interval number and 

triangular fuzzy number. Subsequently, the revised methodology 

was used to address a particular instance of the Traveling 

Salesman Problem (TSP). The overall shortest distance obtained 

using this strategy was then compared to the total distance 

generated by employing a conventional nearest neighbor 

heuristic technique. The findings indicate that the modified 

methodology yields a sequence of visited cities that is equivalent 

to the conventional technique. Additionally, it provides a reliable 

measure of the total shortest distance, which is less than the total 

shortest distance calculated by the old approach. Consequently, 

the findings of this study have the potential to enhance the 

existing methodologies used in addressing the TSP.  

The heuristic approach proposed by Lin et al. [12] for the 

TSP is highly commendable. The authors introduced a heuristic 

approach that demonstrated significant success in generating 

optimal and near-optimal solutions for the STSP. The 

methodology was formulated employing a comprehensive 

heuristic approach that possesses the potential to address diverse 

combinatorial optimization problems. The proposed 

methodology successfully produced optimal solutions for all the 

examined problems, encompassing both "traditional" problems 

documented in existing literature and randomly generated 

problems. The scope of the problems ranged up to a maximum 

of 110 cities. In terms of absolute values, it was observed that a 

typical issue involving 100 cities required less than 25 seconds 

for a single example (GE635) and approximately three minutes 

to reach the optimal solution with a confidence level exceeding 

95%. In addition, some papers are reviewed on the Nearest 

Neighbor Algorithm (NNA) for TSP are mentioned in [13]-[17]. 

4 Methods of Study 

4.1 Basic Nearest Neighbor Algorithm  

The most elementary algorithm employed in the Traveling 

Salesman Problem (TSP) is the Nearest Neighbor Algorithm 

(NNA). The aforementioned approach efficiently produces a 

concise route, albeit infrequently yielding the optimal solution 

[18]. The basic NNA is used to determine a traveling salesman's 

itinerary. The salesperson begins in one city (at random), then 

travels to the city closest to the beginning city. After that, he 

travels to the nearest unexplored city and continues the procedure 

until all of the cities have been visited, at which point he returns 

to the beginning city. The basic NNA algorithm is as follows: 

1. Make all vertices unvisited by default 

2. Select a random vertex and make it the current vertex  𝒖. 

Make a note that  𝒖 has been visited 

3. Find the shortest path between current vertex 𝒖 and a 

previously visited vertex 𝒗 

4. Set the current vertex 𝒖 to 𝒗. Make a note that 𝒗 has been 

visited 

5. Terminate when all of the domain's vertices have been 

visited. Otherwise, proceed to step 3 

6. Return to your starting city 

However, its solution quality suffers owing to randomness. 

Due to the problem, we have proposed a revised version of the 

basic NNA. The basic NNA is mostly probabilistic because it 

cannot always provide the shortest route. But the improved 

algorithm is deterministic. The improved NNA is a route-

construction algorithm. First, it chooses a random city from a list 

of cities in NNA. Then, using the shortest distance, travel to the 

nearest unexplored city. This process will be repeated until all 

cities have been visited and the player is forced to return to the 

starting point.  

4.2 Improved Nearest Neighbor Algorithm 

It began its route on the improved NNA with a short 

distance. Firstly, it sorts all edges, and then it takes a short edge 

with two vertices (or cities). This is the main difference between 

improved NNA and basic NNA. The next steps of the improved 

NNA are like those of the basic NNA. The mathematical analysis 

and algorithm of an improved NNA are discussed in the 

following subsection.  
Let 𝑛 be the number of cities and TSP can be defined 

symmetrically on a full undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 =
{𝐴1, 𝐴2, 𝐴3, . . . , 𝐴𝑛} is the set of vertices, 𝐸 = {(𝐴𝑖, 𝐴𝑗): 𝐴𝑖, 𝐴𝑗 ∈

𝑉, 𝑖 > 𝑗} is a set of edge. Then, calculate the distance of every 

possible edge and select the shortest edge contains two closest 

cites 𝐴𝑖 and 𝐴𝑗   which is our initial edge and expressed as  𝐴𝑖 ↔

𝐴𝑗. 

The set of routes is, 

𝑋1 = 𝑚𝑖𝑛{𝐴𝑖𝐴𝑗: 𝑖 = 1,2, … , 𝑛  and  𝑗 = 1,2, … , 𝑛 − 1  and 

 𝐴𝑖𝐴𝑗 ∈ 𝐸}  

Now, choose the nearest city 𝐴𝑘 from the initial edge and 

connect the city which is expressed as 

𝐴𝑖 ↔ 𝐴𝑗 ↔ 𝐴𝑘 

and the set of the route is, 

𝑋2 = 𝑚𝑖𝑛{𝑋1𝐴𝑘: 𝑘 = 1,2, … , 𝑛 − 2 and 𝐴𝑘 ∈ 𝑉 − 𝑋1} 

then, choose the nearest city 𝐴𝑙 from the last visited city 𝐴𝑘 

and add with the current route which expressed as 

𝐴𝑖 ↔ 𝐴𝑗 ↔ 𝐴𝑘 ↔ 𝐴𝑙 . 

The set of the route is, 

𝑋3 = 𝑚𝑖𝑛{𝑋2𝐴𝑙: 𝑙 = 1,2, … , 𝑛 − 3 and  𝐴𝑙 ∈ 𝑉 − 𝑋2}. 

Similarly taking every city, return to the initial edge where 

a city isn’t connected (suppose 𝐴𝑖) and the route expressed as 

𝐴𝑖 ↔ 𝐴𝑗 ↔ 𝐴𝑘 ↔ 𝐴𝑙 ↔ .  .  . ↔ 𝐴𝑧 ↔ 𝐴𝑖  and  

the set of the route is, 
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𝑋𝑛−1 = 𝑚𝑖𝑛{𝑋𝑛−2𝐴𝑧: 𝑧 = 1,2, … , 𝑛 − (𝑛 − 1) and  𝐴𝑧

∈ 𝑉 − 𝑋𝑛−2} 

In addition, for more visualization, a flowchart of the 

improved NNA is shown in Fig. 1. 

 

Fig. 1 Flowchart of the proposed improved nearest neighbor search algorithm for TSP 

The improved nearest neighbor search algorithm can be 

explained by the following step by step procedure: 

Step:1. Sort all edges from n cities. 

Step:2. Select an edge with a shortage distance. 

Step:3. From the remaining cities, find the nearest unvisited 

city and combine it with the existing edge. 

Step:4. Make a note of the most recent city visited.  

Step:5. Find the closest city to the most recent city visited. 

Step:6. Add the closest city to the tour and mark as visited.  

Step:7. Is there any city that has not yet been visited? If you 

responded yes, go to step 5. 

Step:8. Return to the first chosen edge's starting vertex 

5 Results and Discussion 

In this particular section, a series of simulations were 

conducted on various datasets to assess and compare the 

performance of of the improved NNA to that of the basic NNA. 

In order to fulfil the simulation objectives, a collection of real-

world symmetric Travelling Salesman Problem (TSP) datasets 

from TSPLIB is taken into consideration. Consider 20 

benchmark symmetric TSP datasets with dimensions ranging 

from 52 to 2103. The dataset name is assigned a number value 

that corresponds to its dimension. As an example, the 

alphanumeric identifier "berlin52" represents the numerical 

value assigned to a specific node consisting of 52 geographical 

places inside the city of Berlin. Once the datasets have been 

gathered, it is necessary to compute a symmetric distance matrix 

in which the diagonal members are set to zero. The distance 

matrix provides a measure of the distance between the nodes. 

The evaluation of basic NNA included the computation of the 

best, worst, and average outcomes, as well as the measurement 

of the time taken to run the procedure across all datasets. In the 

improved NNA, each individual test case inside the simulation is 

executed autonomously, taking into consideration the size of the 

dataset. In contrast, it should be noted that in the simulation, 

every test case is executed autonomously, resulting in a twofold 

increase in the dataset lengths for the basic NNA. Both the basic 

NNA and improved NNA are implemented using MATLAB 

R2021a. The simulations are conducted on a computer system 

equipped with a CORE i5 processor operating at a frequency of 

1.80 GHz and 4 GB of RAM. 

The simulation findings and subsequent analysis including 

20 benchmark datasets have been subjected to testing, comparing 

the performance of both the basic NNA and improved NNA. 

Table 1 illustrates the performance comparison between the 

basic NNA and improved NNA for 20 benchmark datasets. The 

first column in the table provides a description of the dataset 

names. The second column provides information pertaining to 

the quantity of cities. The third column describes the best-known 

optimal solution. After that, the fourth column describes the 

optimal solution, execution time of the CPU (in seconds), and 
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error (%) for an improved NNA. The best, average, and worst 

results, the execution time of the CPU (in seconds), and the error 

rate (%) for the average and best of each dataset for basic NNA 

are described in the last column. Here, datasets are also arranged 

in an ascending order of nodes. 

The formula for finding error of improved NNA is 

Error (%) =
result of improved NNA − optimum

optimum
 

and formula we use for finding error of best and average 

solution of basic NNA are 

Errorbest (%) =
best result of NNA − optimum

optimum
 

Erroravg (%) =
averge result of NNA − optimum

optimum
 

Table 1 Performance comparison between basic NNA and improved NNA 

Datasets Nodes Optimum 

Solution 

Improved NNA Basic NNA 

Best Time(s) Error (%) Best Average Worst Time(s) Errorbest (%) Erroravg (%) 

berlin52 52 7542 9161 0.01368 21.4664 8149 9396 10188 0.03394 8.04823 24.583 

rat99 99 1211 1577 0.01020 30.2229 1507 1695 1911 0.07070 24.4426 39.969 

kroC100 100 20749 25519 0.00994 22.9890 26043 27925 30014 0.06900 25.5145 34.587 

lin105 105 14379 17363 0.01073 20.7524 19759 21221 23448 0.12903 37.4157 47.582 

pr107 107 44303 47233 0.01757 6.61354 46563 53181 60539 0.08233 5.10124 20.032 

pr124 124 59030 69066 0.01107 17.0015 67302 75851 84709 0.10606 14.0131 28.496 

ch130 130 6110 7341 0.01750 20.1472 7461 7988 8894 0.08022 22.1119 30.734 

pr152 152 73682 85243 0.01570 15.6903 86665 94459 107039 0.08970 17.6201 28.192 

u159 159 42080 55200 0.02709 31.1787 54509 60038 63711 0.19008 29.5369 42.678 

rat195 195 2323 2624 0.03069 12.9573 2751 3023 3277 0.13011 18.4245 30.134 

d198 198 15780 18485 0.01764 17.1419 18233 22085 24076 0.17593 15.5449 39.956 

kroA200 200 29368 36824 0.01874 25.3881 35161 38291 42451 0.12714 19.7255 30.384 

ts225 225 126645 149243 0.07770 17.8435 146769 160600 177560 0.31578 15.8908 26.811 

pr264 264 49135 57663 0.02865 17.3562 56947 60446 65021 0.20568 15.8995 23.022 

lin318 318 42029 52883 0.04197 25.8250 53621 56250 60102 0.33150 27.5805 33.831 

fl417 417 11861 14773 0.05673 24.5510 14603 16323 17539 0.63161 23.1178 37.610 

rat575 575 6773 8100 0.10071 19.5924 8345 8774 9245 1.69813 23.2090 29.547 

p654 654 34643 43492 0.11859 25.5433 43457 49486 54001 2.27642 25.4426 42.845 

fl1400 1400 20127 26461 0.87500 31.4701 26854 28935 31599 30.2443 33.4226 43.761 

d2103 2103 80529 88547 5.34190 9.95666 86554 93753 99944 249.528 7.48176 16.424 

 
In Table 1, we show the error (%) comparison between the 

improved NNA and the basic NNA with the best-known 

solution. The error (%) of the best result in improved NNA is 

lower than the average in all 20 cities listed above, and the worst 

result is in basic NNA. For example, the dataset "rat99" 

represents the 99 nodes of this city. By using the improved NNA, 

the optimal is 1577, and the average result of that dataset is 1695 

for the basic NNA. The error in improved NNA is 30.2229%, 

whereas the error in basic NNA is 24.4426% and 39.969% for 

the best and average results, respectively. Again, for "lin318," 

using our improved NNA, the optimal solution is 52883. Using 

the basic NNA, the average result is 56328. The error in 

improved NNA is 20.7524%, whereas the error in basic NNA is 

37.4256% and 47.582% for the best and average results, 

respectively. Even for the higher number of cities, the same 

characteristics hold. For example, the dataset "d2103" denotes 

the number of nodes as 2103. This is a huge number of nodes. 

By using an improved NNA, the optimal solution for that dataset 

is 88547. Using the basic NNA, the average result is 93753. The 

error in improved NNA is 9.95666%, whereas the error in basic 

NNA is 7.48176% and 16.424% for the best and average results, 

respectively. 

Similarly, for all other datasets. The fourth and fifth columns 

of Table 1 show a comparison of the computational time between 

improved NNA and basic NNA for any random dataset. The 

required time for execution of the improved NNA is less than the 

basic NNA. For example, using improved NNA, the time of 

execution of "kroC100" is 0.009948 s, and for basic NNA, it is 

0.069040s. Also, by using improved NNA, the time of execution 

of the dataset "ch130" is 0.017507s, and for basic NNA, it is 

0.080252s. Even for the higher number of cities, the same 

characteristics hold. For dataset ‘fl1400’, the execution time is 

0.875745s for improved NNA and 30.244633s for basic NNA. 

Improved NNA, on the other hand, outperforms basic NNA in 

terms of computational time. According to the simulation results, 

improved NNA outperforms both the average and the worst 

results of basic NNA in terms of values and computational time.  

Even with respect to the best-known solution of datasets, the 

error (%) of some cities in improved NNA is less than the error 

(%) of the best result in basic NNA. In improved NNA, the 

optimal solution of 8 datasets provides a better result than the 

best result of basic NNA. For the dataset "kroC100," the optimal 

solution is 25519, whereas the best solution for the basic NNA is 

26043. For this dataset, the error in the improved NNA is 

22.9890%, whereas the error in the basic NNA is 25.5145% for 

the best result with respect to the best-known solutions to the 

dataset. Again for "rat195", the optimal solution for improved 

NNA is 8100, where the best solution for basic NNA is 8345. For 
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this dataset, the error in the improved NNA is 12.9573%, 

whereas the error in the basic NNA is 18.4245%. Likewise for 

the other datasets. Therefore, the improved NNA provides better 

results than the basic NNA, both in the aspect of values and of 

computational time and reduces error. In Fig. 2 the bar chart 

shows the error (%) comparison between the improved NNA and 

the basic NNA with respect to the best-known solutions of 20 

symmetric datasets. The colors blue, orange, and yellow 

represent the best solution error for improved NNA, the best 

solution error for basic NNA, and the best solution error for basic 

NNA, respectively.  

 

The bar chart (Fig. 3) shows the error (%) comparison 

between improved NNA and basic NNA for the 8 best symmetric 

datasets, which is best against basic NNA. For further 

visualization, Fig. 4 graphically represents the difference 

between the improved NNA and the basic NNA of the Best 8 

dataset. There are two figures for each dataset in Fig. 4: one for 

improved NNA and another for basic NNA. The route to an 

optimal solution is shown in the two figures. Comparing table, 

graph, and bar charts, it is demonstrated that the improved NNA 

outperforms the basic NNA in terms of solution quality as well 

as computational time. 

 

 

Fig. 2 Error (%) comparison bar charts for the best solution of improved NNA and the average and best solution of basic NNA 

with respect to the best-known solution for 20 benchmark STSP datasets. 

 

Fig. 3 Error comparison bar charts of improved NNA and basic NNA for best 8 benchmark STSP datasets. 
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Fig. 4 Obtained optimum route for 8 datasets both of improved NNA and basic NNA 

6 Conclusions  

The present study improved the basic NNA for solving 

symmetric TSP. It compared improved NNA with basic NNA 

because both algorithms are route construction algorithms. 

However, the main difference between them is that the improved 

NNA is deterministic, i.e., the results produced by this algorithm 

are same at every single run. On the other hand, the basic NNA 

is probabilistic, i.e., this algorithm generates different results at 

every single run. All datasets have been subjected to 

comprehensive testing. The simulation findings and subsequent 

analysis demonstrate that the improved NNA yields superior 

outcomes compared to the basic NNA. It has been discovered 

that when the initial solution is selected randomly, the improved 

NNA outperforms and exhibits more efficiency compared to the 

basic NNA. Based on the aforementioned datasets, simulation 

design, and environmental conditions, it can be inferred that 

improved NNA yields superior outcomes with reduced time 

consumption. In subsequent analyses, the improved NNA will be 

juxtaposed with other route construction algorithms. 

Furthermore, it is possible to develop a hybrid method by 

integrating the improved NNA with other route construction 

algorithms. As a result, it will achieving superior outcomes 

compared to an improved NNA. 
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